Error reduction and convergence for an adaptive mixed finite element method

An adaptive mixed finite element method (AMFEM) is designed to guarantee an error reduction, also known as saturation property: after each refinement step, the error for the fine mesh is strictly smaller than the error for the coarse mesh up to oscillation terms. This error reduction property is established here for the Raviart-Thomas finite element method with a reduction factor p < 1 uniformly for the L 2 norm of the flux errors. Our result allows for linear convergence of a proper adaptive mixed finite element algorithm with respect to the number of refinement levels. The adaptive algorithm surprisingly does not require any particular mesh design, unlike the conforming finite element method. The new arguments are a discrete local efficiency and a quasi-orthogonality estimate. The proof does not rely on duality or on regularity.

[1]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[2]  Barbara I. Wohlmuth,et al.  A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..

[3]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[4]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[5]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[7]  A. Alonso Error estimators for a mixed method , 1996 .

[8]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[9]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[10]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[11]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[12]  Ronald H. W. Hoppe,et al.  Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems , 1997 .

[13]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[14]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[15]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[16]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[17]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[18]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.