Feedback stabilization of axisymmetric MHD instabilities in tokamaks

A stability principle is derived and applied to simple tokamak configurations in order to study feedback stabilization of unstable, vertically elongated tokamak plasmas. For practical applicability it is assumed that the fast instabilities are slowed down by passive conductors so that only slow motions have to be considered. Numerical results are presented for a surface current model of plasma with one conjugate pair of axisymmetric feedback loops. Stabilization is possible, except in a limited region of loop positions. The optimum loop position in the region with possible stabilization is determined.

[1]  G. Laval,et al.  Hydromagnetic stability of a current‐carrying pinch with noncircular cross section , 1974 .

[2]  R. Miller,et al.  Wall stabilization of axisymmetric modes in noncircular tokamak plasmas , 1978 .

[3]  M. Rosen Infinite wavelength kink instabilities in uniform current cylindrical plasmas with rectangular cross sections , 1975 .

[4]  S. Yoshikawa Application of the Virial Theorem to Equilibria of Toroidal Plasmas , 1964 .

[5]  E. Rebhan,et al.  Stability of tokamaks with respect to slip motions , 1976 .

[6]  Vitalii D. Shafranov,et al.  Plasma equilibrium in a Tokamak , 1971 .

[7]  MHD stability of toroidal equilibria to axisymmetric modes , 1977 .

[8]  G. V. Sheffield,et al.  Vertical stability of elongated tokamaks , 1974 .

[9]  E. Rebhan,et al.  Axisymmetric MHD stability of sharp-boundary tokamaks , 1977 .

[10]  H. Tasso,et al.  A theorem on MHD-instability of plasmas with resistive walls , 1971 .

[11]  E. A. Frieman,et al.  An energy principle for hydromagnetic stability problems , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  R. Kress Die behandlung zweier randwertprobleme für die vektorielle poissongleidiung nach einer integralgleichungsmethode , 1970 .

[13]  O. Gruber,et al.  The Belt Pinch — a high-β tokamak with non-circular cross-section , 1976 .

[14]  K. Lackner,et al.  Numerical study of displacement instability in elongated tokamak , 1974 .

[15]  E. Rebhan Stability boundaries of tokamaks with respect to rigid displacements , 1975 .

[16]  M. Chu,et al.  Stability of high-β skin current tokamaks to axially symmetric displacements , 1977 .

[17]  P. Rutherford Stability of the elliptical cross section for a free-boundary tokamak , 1973 .

[18]  David Potter Computational physics , 1973 .

[19]  F. Haas Stability of a high-β tokamak to uniform vertical displacements , 1975 .