Optical fibres for a mini-dish/Stirling system: thermodynamic optimization

A thermodynamic optimization of a solar mini-dish/stirling system is presented. The solar collector heat losses by convection and radiation are diminished by using optical fibres to transport concentrated solar energy. We analyse an absorber-heater for the solar heat engine to ensure the reduction of the heat losses using the first law and the second law. Taking into account internal and external irreversibilities for the solar heat engine, the optimal operating temperature and the overall efficiency of the system are established.

[1]  Fernando Angulo-Brown,et al.  A Müser - Curzon - Ahlborn engine model for photothermal conversion , 1997 .

[2]  Charles Harman,et al.  The effect of irreversibilities on solar Stirling engine cycle performance , 1999 .

[3]  Dawei Liang,et al.  Fiber-optic solar energy transmission and concentration , 1998 .

[4]  M. Hoffmann,et al.  Solar-Powered Photocatalytic Fiber-Optic Cable Reactor for Waste Stream Remediation , 1997 .

[5]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[6]  Ivo Rendina,et al.  Coupling efficiency of non-uniform optical fibers for solar energy applications☆ , 1989 .

[7]  O. A. Jaramillo,et al.  A thermal study of optical fibres transmitting concentrated solar energy , 1999 .

[8]  Jeff Hecht,et al.  Understanding Fiber Optics , 1987 .

[9]  A. D. Vos,et al.  Entropy fluxes, endoreversibility, and solar energy conversion , 1993 .

[10]  Viorel Badescu,et al.  Statistical thermodynamic foundation for photovoltaic and photothermal conversion III: Application to hybrid solar converters , 1997 .

[11]  M. Modest Radiative heat transfer , 1993 .

[12]  Helmut Müser Thermodynamische Behandlung von Elektronenprozessen in Halbleiter-Randschichten , 1957 .

[13]  O. A. Jaramillo,et al.  Application of fiber optics in the hydrogen production by photoelectrolysis , 1998 .

[14]  O. A. Jaramillo,et al.  A theoretical and experimental thermal study of SiO2 optical fibres transmitting concentrated radiative energy , 2002 .

[15]  Jeffrey M. Gordon,et al.  On optimizing maximum‐power heat engines , 1991 .

[16]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[17]  J. An,et al.  Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. , 2000, Journal of biotechnology.

[18]  Mohand A. Ait-Ali Optimum endoreversible power cycle with a specified operating temperature range , 1994 .

[19]  Ari Rabl,et al.  Active solar collectors and their applications , 1985 .

[20]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[21]  Daniel Feuermann,et al.  SOLAR FIBER-OPTIC MINI-DISHES: A NEW APPROACH TO THE EFFICIENT COLLECTION OF SUNLIGHT , 1999 .

[22]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[23]  Jincan Chen,et al.  The effect of regenerative losses on the efficiency of a Stirling heat engine at maximum power output , 1997 .

[24]  Lingen Chen,et al.  Optimum performance of irreversible stirling engine with imperfect regeneration , 1998 .

[25]  G. Olalde,et al.  Optical fiber reflectometer coupled with a solar concentrator to determine solar reflectivity and absorptivity at high temperature , 1999 .

[26]  Fernando Angulo-Brown,et al.  Endoreversible thermal cycle with a nonlinear heat transfer law , 1993 .

[27]  Selahattın Gök Tun Finite-time optimization of a solar-driven heat engine , 1996 .

[28]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[29]  David A. Blank Universal power optimized work for reciprocating internally reversible Stirling-like heat engine cycles with regeneration and linear external heat transfer , 1998 .

[30]  Fernando Angulo-Brown,et al.  A general property of endoreversible thermal engines , 1997 .

[31]  M. M. Salah El-Din,et al.  Thermodynamic optimisation of irreversible solar heatengines , 1999 .

[32]  S. C. Kaushik,et al.  Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses , 2000 .

[33]  Daisuke Kato,et al.  Application of optical fibers to the transmission of solar radiation , 1976 .

[34]  Daniel Feuermann,et al.  Solar surgery: remote fiber optic irradiation with highly concentrated sunlight in lieu of lasers , 1998 .

[35]  O. A. Jaramillo,et al.  Non-linear model for absorption in SiO2 optical fibres: Transport of concentrated solar energy , 2000 .

[36]  A. D. Vos,et al.  How endoreversible thermodynamics relates to Onsager’s nonequilibrium thermodynamics , 1997 .

[37]  Abraham Kribus,et al.  Optical fibers and solar power generation , 2000 .

[38]  J. Dugas,et al.  Theoretical limits of optical fibre solar furnaces , 1985 .

[39]  J. Ogbonna,et al.  An integrated solar and artificial light system for internal illumination of photobioreactors. , 1999, Journal of biotechnology.

[40]  Sergio Cuevas,et al.  Entropy generation analysis of magnetohydrodynamic induction devices , 1999 .

[41]  J. Gordon,et al.  General performance characteristics of real heat engines , 1992 .

[42]  J. Cariou,et al.  Transport of solar energy with optical fibres , 1982 .

[43]  Abraham Kribus,et al.  The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems , 1999 .

[44]  Ari Rabl,et al.  Comparison of solar concentrators , 1975 .

[45]  Jeffrey M. Gordon,et al.  HIGH-EFFICIENCY SOLAR COOLING , 2000 .

[46]  V. Badescu Accurate upper bound for the efficiency of converting solar energy into work , 1998 .

[47]  Frank M. Gerner,et al.  Using fiber optics to tap the sun`s power , 1993 .

[48]  A. Patel A high temperature solar energy conversion device using optical waveguides , 1984 .

[49]  Dawei Liang,et al.  200-W solar energy delivery with optical fiber bundles , 1997, Optics + Photonics.

[50]  M. Feidt,et al.  The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine , 1998 .

[51]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[52]  L.Berrin Erbay,et al.  Analysis of the stirling heat engine at maximum power conditions , 1997 .