Optical fibres for a mini-dish/Stirling system: thermodynamic optimization
暂无分享,去创建一个
[1] Fernando Angulo-Brown,et al. A Müser - Curzon - Ahlborn engine model for photothermal conversion , 1997 .
[2] Charles Harman,et al. The effect of irreversibilities on solar Stirling engine cycle performance , 1999 .
[3] Dawei Liang,et al. Fiber-optic solar energy transmission and concentration , 1998 .
[4] M. Hoffmann,et al. Solar-Powered Photocatalytic Fiber-Optic Cable Reactor for Waste Stream Remediation , 1997 .
[5] A. Bejan. Advanced Engineering Thermodynamics , 1988 .
[6] Ivo Rendina,et al. Coupling efficiency of non-uniform optical fibers for solar energy applications☆ , 1989 .
[7] O. A. Jaramillo,et al. A thermal study of optical fibres transmitting concentrated solar energy , 1999 .
[8] Jeff Hecht,et al. Understanding Fiber Optics , 1987 .
[9] A. D. Vos,et al. Entropy fluxes, endoreversibility, and solar energy conversion , 1993 .
[10] Viorel Badescu,et al. Statistical thermodynamic foundation for photovoltaic and photothermal conversion III: Application to hybrid solar converters , 1997 .
[11] M. Modest. Radiative heat transfer , 1993 .
[12] Helmut Müser. Thermodynamische Behandlung von Elektronenprozessen in Halbleiter-Randschichten , 1957 .
[13] O. A. Jaramillo,et al. Application of fiber optics in the hydrogen production by photoelectrolysis , 1998 .
[14] O. A. Jaramillo,et al. A theoretical and experimental thermal study of SiO2 optical fibres transmitting concentrated radiative energy , 2002 .
[15] Jeffrey M. Gordon,et al. On optimizing maximum‐power heat engines , 1991 .
[16] A. Bejan. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .
[17] J. An,et al. Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. , 2000, Journal of biotechnology.
[18] Mohand A. Ait-Ali. Optimum endoreversible power cycle with a specified operating temperature range , 1994 .
[19] Ari Rabl,et al. Active solar collectors and their applications , 1985 .
[20] W. Ebeling. Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .
[21] Daniel Feuermann,et al. SOLAR FIBER-OPTIC MINI-DISHES: A NEW APPROACH TO THE EFFICIENT COLLECTION OF SUNLIGHT , 1999 .
[22] A. D. Vos,et al. Endoreversible thermodynamics of solar energy conversion , 1992 .
[23] Jincan Chen,et al. The effect of regenerative losses on the efficiency of a Stirling heat engine at maximum power output , 1997 .
[24] Lingen Chen,et al. Optimum performance of irreversible stirling engine with imperfect regeneration , 1998 .
[25] G. Olalde,et al. Optical fiber reflectometer coupled with a solar concentrator to determine solar reflectivity and absorptivity at high temperature , 1999 .
[26] Fernando Angulo-Brown,et al. Endoreversible thermal cycle with a nonlinear heat transfer law , 1993 .
[27] Selahattın Gök Tun. Finite-time optimization of a solar-driven heat engine , 1996 .
[28] Fernando Angulo-Brown,et al. An ecological optimization criterion for finite‐time heat engines , 1991 .
[29] David A. Blank. Universal power optimized work for reciprocating internally reversible Stirling-like heat engine cycles with regeneration and linear external heat transfer , 1998 .
[30] Fernando Angulo-Brown,et al. A general property of endoreversible thermal engines , 1997 .
[31] M. M. Salah El-Din,et al. Thermodynamic optimisation of irreversible solar heatengines , 1999 .
[32] S. C. Kaushik,et al. Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses , 2000 .
[33] Daisuke Kato,et al. Application of optical fibers to the transmission of solar radiation , 1976 .
[34] Daniel Feuermann,et al. Solar surgery: remote fiber optic irradiation with highly concentrated sunlight in lieu of lasers , 1998 .
[35] O. A. Jaramillo,et al. Non-linear model for absorption in SiO2 optical fibres: Transport of concentrated solar energy , 2000 .
[36] A. D. Vos,et al. How endoreversible thermodynamics relates to Onsager’s nonequilibrium thermodynamics , 1997 .
[37] Abraham Kribus,et al. Optical fibers and solar power generation , 2000 .
[38] J. Dugas,et al. Theoretical limits of optical fibre solar furnaces , 1985 .
[39] J. Ogbonna,et al. An integrated solar and artificial light system for internal illumination of photobioreactors. , 1999, Journal of biotechnology.
[40] Sergio Cuevas,et al. Entropy generation analysis of magnetohydrodynamic induction devices , 1999 .
[41] J. Gordon,et al. General performance characteristics of real heat engines , 1992 .
[42] J. Cariou,et al. Transport of solar energy with optical fibres , 1982 .
[43] Abraham Kribus,et al. The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems , 1999 .
[44] Ari Rabl,et al. Comparison of solar concentrators , 1975 .
[45] Jeffrey M. Gordon,et al. HIGH-EFFICIENCY SOLAR COOLING , 2000 .
[46] V. Badescu. Accurate upper bound for the efficiency of converting solar energy into work , 1998 .
[47] Frank M. Gerner,et al. Using fiber optics to tap the sun`s power , 1993 .
[48] A. Patel. A high temperature solar energy conversion device using optical waveguides , 1984 .
[49] Dawei Liang,et al. 200-W solar energy delivery with optical fiber bundles , 1997, Optics + Photonics.
[50] M. Feidt,et al. The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine , 1998 .
[51] F. Curzon,et al. Efficiency of a Carnot engine at maximum power output , 1975 .
[52] L.Berrin Erbay,et al. Analysis of the stirling heat engine at maximum power conditions , 1997 .