Regularity theory and high order numerical methods for the (1D)-fractional Laplacian

This paper presents regularity results and associated high order numerical methods for one-dimensional fractional-Laplacian boundary-value problems. On the basis of a factorization of solutions as a product of a certain edge-singular weight ω times a "regular" unknown, a characterization of the regularity of solutions is obtained in terms of the smoothness of the corresponding right-hand sides. In particular, for right-hand sides which are analytic in a Bernstein ellipse, analyticity in the same Bernstein ellipse is obtained for the ``regular'' unknown. Moreover, a sharp Sobolev regularity result is presented which completely characterizes the co-domain of the fractional-Laplacian operator in terms of certain weighted Sobolev spaces introduced in (Babuska and Guo, SIAM J. Numer. Anal. 2002). The present theoretical treatment relies on a full eigendecomposition for a certain weighted integral operator in terms of the Gegenbauer polynomial basis. The proposed Gegenbauer-based Nystrom numerical method for the fractional-Laplacian Dirichlet problem, further, is significantly more accurate and efficient than other algorithms considered previously. The sharp error estimates presented in this paper indicate that the proposed algorithm is spectrally accurate, with convergence rates that only depend on the smoothness of the right-hand side. In particular, convergence is exponentially fast (resp. faster than any power of the mesh-size) for analytic (resp. infinitely smooth) right-hand sides. The properties of the algorithm are illustrated with a variety of numerical results.

[1]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[2]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[3]  Bruce Ian Henry,et al.  Fractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions , 2011, SIAM J. Appl. Math..

[4]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[5]  Adam M. Oberman,et al.  Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach , 2013, SIAM J. Numer. Anal..

[6]  Ivo Babuska,et al.  Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..

[7]  Nicola Abatangelo Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian , 2013, 1310.3193.

[8]  M. A. Jaswon Integral equation methods in potential theory. I , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[10]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[11]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[12]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[13]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[14]  Li-Lian Wang,et al.  On exponential convergence of Gegenbauer interpolation and spectral differentiation , 2011, Math. Comput..

[15]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[16]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  E. Valdinoci,et al.  Gevrey regularity for integro-differential operators , 2013, 1504.00831.

[18]  Alexey Kuznetsov,et al.  Fractional Laplace Operator and Meijer G-function , 2015, 1509.08529.

[19]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[20]  Gabriel Acosta,et al.  A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations , 2015, SIAM J. Numer. Anal..

[21]  Enrico Valdinoci,et al.  From the long jump random walk to the fractional Laplacian , 2009, 0901.3261.

[22]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[23]  W. N. Bailey,et al.  Generalized hypergeometric series , 1935 .

[24]  R. Kress Linear Integral Equations , 1989 .

[25]  Jan S. Hesthaven,et al.  Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.

[26]  Li-Lian Wang,et al.  Sharp Error Bounds for Jacobi Expansions and Gegenbauer-Gauss Quadrature of Analytic Functions , 2012, SIAM J. Numer. Anal..

[27]  Oscar P. Bruno,et al.  Second‐kind integral solvers for TE and TM problems of diffraction by open arcs , 2012, 1204.3701.

[28]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[29]  Oscar P. Bruno,et al.  A generalized Calderón formula for open-arc diffraction problems: theoretical considerations , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[31]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  Ian H. Sloan,et al.  On integral equations of the first kind with logarithmic kernels , 1988 .

[34]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[35]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[36]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[37]  R. Servadei,et al.  On the spectrum of two different fractional operators , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[38]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[39]  G. T. Symm,et al.  Integral equation methods in potential theory. II , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  Matteo Cozzi Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces , 2016, 1601.02819.

[41]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[42]  W. Rudin Principles of mathematical analysis , 1964 .

[43]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .