On the asymptotics of Kronecker coefficients

Kronecker coefficients encode the tensor products of complex irreducible representations of symmetric groups. Their stability properties have been considered recently by several authors (Vallejo, Pak and Panova, Stembridge). We describe a geometric method, based on Schur–Weyl duality, that allows to produce huge series of instances of this phenomenon. Moreover, the method gives access to lots of extra information. Most notably, we can often compute the stable Kronecker coefficients, sometimes as numbers of points in very explicit polytopes. We can also describe explicitly the moment polytope in the neighbourhood of our stable triples. Finally, we explain an observation of Stembridge on the behaviour of certain rectangular Kronecker coefficients, by relating it to the affine Dynkin diagram of type $$E_6$$E6.

[1]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[2]  Lectures on geometric constructions of the irreducible representations of GL_n , 2009, 0912.0569.

[3]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[4]  F. Murnaghan The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1938 .

[5]  Laurent Manivel,et al.  On rectangular Kronecker coefficients , 2009, 0907.3351.

[6]  Laurent Manivel,et al.  A note on certain Kronecker coefficients , 2008, 0809.3710.

[7]  Laurent Manivel,et al.  Applications de Gauss et pléthysme , 1997 .

[8]  Anatol N. Kirillov An Invitation to the Generalized Saturation Conjecture , 2004 .

[9]  Emmanuel Briand,et al.  The stability of the Kronecker product of Schur functions , 2010 .

[10]  B. Kostant Clifford Algebra Analogue of the Hopf–Koszul–Samelson Theorem, theρ-DecompositionC(g)=End Vρ⊗C(P), and the g-Module Structure of ∧g , 1997 .

[11]  Etienne Rassart A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.

[12]  Ernesto Vallejo,et al.  Stability of Kronecker coefficients via discrete tomography , 2014, Discret. Math..

[13]  Laurent Manivel,et al.  Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .

[14]  Victor G. Kac,et al.  Some remarks on nilpotent orbits , 1980 .

[15]  Ernesto Vallejo,et al.  A diagrammatic approach to Kronecker squares , 2013, J. Comb. Theory, Ser. A.

[16]  F D Murnaghan ON THE ANALYSIS OF THE KRONECKER PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF S(n). , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[18]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[19]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[20]  M. Vergne Quantification géométrique et réduction symplectique , 2000 .

[21]  Ketan Mulmuley,et al.  Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry , 2007, ArXiv.

[22]  Ernesto Vallejo,et al.  A Stability Property for Coefficients in Kronecker Products of Complex Sn Characters , 2009, Electron. J. Comb..

[23]  Rosa C. Orellana,et al.  Reduced Kronecker Coefficients and Counter–Examples to Mulmuley’s Strong Saturation Conjecture SH , 2009, computational complexity.

[24]  R. H. Makar On the Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1949 .

[25]  Eckhard Meinrenken,et al.  SINGULAR REDUCTION AND QUANTIZATION , 1997, dg-ga/9707023.

[26]  Nicolas Ressayre,et al.  Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.

[27]  I. Pak,et al.  Bounds on the Kronecker coefficients , 2014, 1406.2988.

[28]  M. Walter,et al.  Moment Cones of Representations , 2014 .

[29]  J. Stembridge Generalized Stability of Kronecker Coefficients , 2014 .