Giant magnetoimpedance effects in patterned Co‐based ribbons with a meander structure

Longitudinal and transverse giant magnetoimpedance (GMI) effects in micropatterned ribbons (Metglas® 2714A) with meander structure are investigated. The maximum longitudinal GMI ratio of the ribbons is 180.4% and it presents to HL = 10 Oe and an AC frequency f = 20 MHz. In the range of 0–10 Oe, the GMI sensitivity of ribbons is 8.1%/Oe at 20 MHz. The maximum transverse GMI ratio is much less than the longitudinal one and the position of GMI extreme value is corresponding to higher magnetic field. The difference between the longitudinal and the transverse GMI effect is due to two main reasons: one is the easy axis deviates from the transverse direction of the sample; another is the demagnetizing factor D⊥ effect on the longitudinal permeability. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Selcuk Atalay,et al.  Magnetoimpedance effect in electroplated NiFeRu/Cu wire , 2006 .

[2]  Cheolgi Kim,et al.  Effect of annealing on anisotropy field in Fe84Zr7B8Cu1 amorphous ribbons evaluated by giant magnetoimpedance , 1999 .

[3]  L. Panina,et al.  Magneto-impedance in NiFe/Au/NiFe sandwich films with different types of anisotropy , 2004 .

[4]  Y. Kayano,et al.  Detection of wide band signal by a high frequency carrier-type magnetic probe , 2006 .

[5]  Young-Ho Kim,et al.  Giant magnetoimpedence effects in micro‐patterned Co52Fe32B11Si5 amorphous ribbons , 2007 .

[6]  J. P. Sinnecker,et al.  Frequency dependence of the magnetoimpedance in amorphous CoP electrodeposited layers , 2000 .

[7]  Michael R Wisnom,et al.  Effect of annealing temperature on permeability and giant magneto-impedance of Fe-based amorphous ribbon , 2006 .

[8]  Cheolgi Kim,et al.  Permeability and giant magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X=Cr, Mn, Ni) amorphous ribbons , 2001 .

[9]  Tsuyoshi Uchiyama,et al.  Giant magneto-impedance in Co-rich amorphous wires and films , 1995 .

[10]  Shao-xiong Zhou,et al.  Giant magnetoimpedance effects in the amorphous ribbon Fe8.0Co62.4Mn0.5Mo0.6Ni0.5Si14.7B13.3 , 1999 .

[11]  M. Wisnom,et al.  Enhanced GMI effect in a Co70Fe5Si15B10 ribbon due to Cu and Nb substitution for B , 2004 .

[12]  L. V. Panina,et al.  Magneto‐impedance effect in amorphous wires , 1994 .

[13]  Yutaka Nonomura,et al.  Enhancement of giant magneto-impedance in layered film by insulator separation , 1996 .

[14]  C. Chien,et al.  Longitudinal and transverse magneto‐impedance in amorphous Fe73.5Cu1Nb3Si13.5B9 films , 1995 .

[15]  Li Lu,et al.  Enhancement of giant magnetoimpedance effect of electroplated NiFe/Cu composite wires by dc Joule annealing , 2003 .

[16]  Shyam S. Mohapatra,et al.  Magnetoimpedance biosensor for Fe3O4 nanoparticle intracellular uptake evaluation , 2007 .

[17]  L. Panina,et al.  Effect of induced anisotropy on magnetoimpedance characteristics in NiFe/Au/NiFe sandwich thin films , 2004 .

[18]  Galina V. Kurlyandskaya,et al.  Giant-magnetoimpedance-based sensitive element as a model for biosensors , 2003 .

[19]  Hua-Xin Peng,et al.  Giant magnetoimpedance materials: Fundamentals and applications , 2008 .

[20]  F. Alves,et al.  Trilayer GMI sensors based on fast stress-annealing of FeSiBCuNb ribbons , 2008 .

[21]  Shishen Yan,et al.  Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films , 2000 .

[22]  E. Asua,et al.  Giant magnetoimpedance: A label-free option for surface effect monitoring , 2007 .

[23]  Yong Zhou,et al.  The investigation of giant magnetoimpedance effect in meander NiFe/Cu/NiFe film , 2008 .

[24]  Horia Chiriac,et al.  Magnetic GMI sensor for detection of biomolecules , 2005 .

[25]  Ibrahim Elshafiey,et al.  Gmr- and Gmi-Based Systems for Nondestructive Evaluation of Printed Circuit Board , 2007, J. Circuits Syst. Comput..