Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves

This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under excitation-annihilation free conditions, both for the F0- and the Fm-state. The corresponding average lifetimes are ~250 ps and ~1.5 ns, respectively, similar to those of isolated chloroplasts. These values appear to be the same for chloroplasts in the top, middle, and bottom layer of the leaves. With the spatial resolution of ~500 nm in the focal (xy) plane and 2 μm in the z direction, it appears to be impossible to fully resolve the grana stacks and stroma lamellae, but variations in the fluorescence lifetimes, and thus of the composition on a pixel-to-pixel base can be observed.

[1]  J. Kennis,et al.  Identification of a mechanism of photoprotective energy dissipation in higher plants , 2007, Nature.

[2]  Bruno Robert,et al.  Molecular basis of photoprotection and control of photosynthetic light-harvesting , 2005, Nature.

[3]  Axel Bergmann,et al.  Lifetime Imaging Techniques for Optical Microscopy , 2003 .

[4]  Egbert J Boekema,et al.  Supramolecular organization of thylakoid membrane proteins in green plants. , 2005, Biochimica et biophysica acta.

[5]  F. Garlaschi,et al.  Independent fluorescence emission of the chlorophyll spectral forms in higher plant Photosystem II , 1992 .

[6]  W. Webb,et al.  Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Grondelle,et al.  Understanding the Energy Transfer Function of LHCII, the Major Light-Harvesting Complex of Green Plants† , 2001 .

[8]  Doaa F George,et al.  Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue. , 2005, Luminescence : the journal of biological and chemical luminescence.

[9]  O. Schwartz,et al.  Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in the green algae , 1999 .

[10]  E. Pfündel,et al.  Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence , 1998, Photosynthesis Research.

[11]  Jan M. Anderson Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective , 1999 .

[12]  A. van Hoek,et al.  Excitation energy transfer and charge separation in photosystem II membranes revisited. , 2006, Biophysical journal.

[13]  R. Spruijt,et al.  Ultrafast resonance energy transfer from a site-specifically attached fluorescent chromophore reveals the folding of the N-terminal domain of CP29 , 2009 .

[14]  W. Chow,et al.  Variable stoichiometries of photosystem II to photosystem I reaction centres , 1988, Photosynthesis Research.

[15]  D. Spencer,et al.  Observations on the Structure of Grana-Containing Chloroplasts and a Proposed Model of Chloroplast Structure , 1962 .

[16]  N. Nelson,et al.  Picosecond fluorescence of intact and dissolved PSI-LHCI crystals. , 2008, Biophysical journal.

[17]  Govindjee,et al.  Fluorescence Lifetime Imaging (FLI) in Real-Time - a New Technique in Photosynthesis Research , 2000, Photosynthetica.

[18]  R. Grondelle,et al.  Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy , 1996 .

[19]  Jan-Willem Borst,et al.  Multiphoton microspectroscopy in living plant cells , 2003, SPIE BiOS.

[20]  B. Rumberg,et al.  H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flux measurements , 1996 .

[21]  H. Gerritsen,et al.  Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. , 2001, Biophysical journal.

[22]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[23]  R. Jennings,et al.  Fluorescence decay and spectral evolution in intact photosystem I of higher plants. , 2000, Biochemistry.

[24]  A. Visser,et al.  Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy , 1999, European Biophysics Journal.

[25]  Johannes W. Hofstraat,et al.  Linear algorithms for stretched exponential decay analysis , 1999 .

[26]  P. Joliot,et al.  Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. , 2004, Biochimica et biophysica acta.

[27]  L. Mets,et al.  Direct observation of energy transfer in a photosynthetic membrane: chlorophyll b to chlorophyll a transfer in LHC , 1989 .

[28]  Liu Xianming,et al.  A Time Petri Net Extended with Price Information , 2007 .

[29]  R. Bassi,et al.  Chlorophyll b to chlorophyll a energy transfer kinetics in the CP29 antenna complex: a comparative femtosecond absorption study between native and reconstituted proteins. , 2003, Biophysical journal.

[30]  G. Fleming,et al.  Two-Photon Excitation Spectrum of Light-Harvesting Complex II and Fluorescence Upconversion after One- and Two-Photon Excitation of the Carotenoids , 2000 .

[31]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[32]  P. Albertsson,et al.  The constant proportion of grana and stroma lamellae in plant chloroplasts. , 2004, Physiologia plantarum.

[33]  C. Gradinaru,et al.  Identifying the Pathways of Energy Transfer between Carotenoids and Chlorophylls in LHCII and CP29. A Multicolor, Femtosecond Pump-Probe Study , 2000 .

[34]  G. Garab,et al.  Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. , 2007, Biochimica et biophysica acta.

[35]  Takayoshi Kobayashi,et al.  Dynamic Intensity Borrowing in Porphyrin J-Aggregates Revealed by Sub-5-fs Spectroscopy , 2000 .

[36]  W. Webb,et al.  Multiphoton microscopy in biological research. , 2001, Current opinion in chemical biology.

[37]  R. van Grondelle,et al.  Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. , 2001, Biophysical journal.

[38]  Gyozo Garab,et al.  Granum revisited. A three-dimensional model--where things fall into place. , 2003, Trends in plant science.

[39]  E. Peterman,et al.  Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants , 1997 .

[40]  A. van Hoek,et al.  Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters. , 2008, Biochimica et biophysica acta.

[41]  Vladimir V. Apanasovich,et al.  Fluorescence Lifetime Imaging Microscopy (FLIM) data analysis with TIMP , 2007 .

[42]  A. Ben-Shem,et al.  The complex architecture of oxygenic photosynthesis , 2004, Nature Reviews Molecular Cell Biology.

[43]  H Szmacinski,et al.  Fluorescence lifetime imaging. , 1992, Analytical biochemistry.

[44]  V. Sarafis,et al.  Three-dimensional structure of living chloroplasts as visualized by confocal scanning laser microscopy , 1989, Protoplasma.

[45]  M. G. Müller,et al.  Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. , 2001, Biophysical journal.