Chloroplast microsatellites: new tools for studies in plant ecology and evolution.

The nonrecombinant, uniparentally inherited nature of organelle genomes makes them useful tools for evolutionary studies. However, in plants, detecting useful polymorphism at the population level is often difficult because of the low level of substitutions in the chloroplast genome, and because of the slow substitution rates and intramolecular recombination of mtDNA. Chloroplast microsatellites represent potentially useful markers to circumvent this problem and, to date, studies have demonstrated high levels of intraspecific variability. Here, we discuss the use of these markers in ecological and evolutionary studies of plants, as well as highlighting some of the potential problems associated with such use.

[1]  P. Hedrick PERSPECTIVE: HIGHLY VARIABLE LOCI AND THEIR INTERPRETATION IN EVOLUTION AND CONSERVATION , 1999, Evolution; international journal of organic evolution.

[2]  G. Bucci,et al.  Detection of haplotypic variation and natural hybridization in halepensis‐complex pine species using chloroplast simple sequence repeat (SSR) markers , 1998 .

[3]  J. Palmer,et al.  Chloroplast DNA systematics: a review of methods and data analysis , 1994 .

[4]  D. Pollock,et al.  Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. , 1997, The Journal of heredity.

[5]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[6]  P. Jarne,et al.  Microsatellites, from molecules to populations and back. , 1996, Trends in ecology & evolution.

[7]  T. Ishii,et al.  Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species , 2000, Theoretical and Applied Genetics.

[8]  R. Petit,et al.  Finite island model for organelle and nuclear genes in plants , 1993, Heredity.

[9]  M. Morgante,et al.  Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Morgante,et al.  DNA fingerprints of rice (Oryza sativa) obtained from hypervariable chloroplast simple sequence repeats , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  M. C. Grant,et al.  Even larger organisms , 1992, Nature.

[12]  G. Bryan,et al.  Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants , 1999, Theoretical and Applied Genetics.

[13]  R. Gardner,et al.  A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. , 1999, Genome.

[14]  R. Petit,et al.  A set of universal primers for amplification of polymorphic non‐coding regions of mitochondrial and chloroplast DNA in plants , 1995, Molecular ecology.

[15]  D. Mccauley The use of chloroplast DNA polymorphism in studies of gene flow in plants. , 1995, Trends in ecology & evolution.

[16]  S. Tanksley,et al.  Seed banks and molecular maps: unlocking genetic potential from the wild. , 1997, Science.

[17]  John C. Avise,et al.  Molecular Markers, Natural History and Evolution , 1993, Springer US.

[18]  M. Morgante,et al.  Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. , 1996, Genetics.

[19]  R. Ennos,et al.  Using organelle markers to elucidate the history, ecology and evolution of plant populations , 1999 .

[20]  M. Morgante,et al.  Size homoplasy in chloroplast microsatellites of wild perennial relatives of soybean (Glycine subgenus Glycine) , 1998, Molecular biology and evolution.

[21]  W. Powell,et al.  Gene–pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple–sequence repeats , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Douglas E. Soltis,et al.  Molecular Systematics of Plants , 1992, Springer US.

[23]  G. Vendramin,et al.  Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). , 2000, Genome.

[24]  J. Bertranpetit Genome, diversity, and origins: the Y chromosome as a storyteller. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Morgante,et al.  Analysis of Hypervariable Chloroplast Microsatellites in Pinus Halepensis Reveals a Dramatic Genetic Bottleneck , 1998 .

[26]  J. Avise Phylogeography: The History and Formation of Species , 2000 .

[27]  M. Morgante,et al.  The use of uniparentally inherited simple sequence repeat markers in plant population studies and systematics , 1999 .

[28]  K. Olsen,et al.  Gene genealogies and population variation in plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  W. Powell,et al.  Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum , 1999, Molecular ecology.

[30]  P. Hollingsworth,et al.  Molecular systematics and plant evolution , 1999 .

[31]  Wen-Hsiung Li,et al.  Coalescing into the 21st century: An overview and prospects of coalescent theory. , 1999, Theoretical population biology.

[32]  M. Morgante,et al.  Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome , 1995, Current Biology.

[33]  D. Goldstein,et al.  A low mutation rate for chloroplast microsatellites. , 1999, Genetics.

[34]  L. Gottlieb,et al.  Plant Evolutionary Biology , 1988, Springer Netherlands.

[35]  R. Petit,et al.  An enlarged set of consensus primers for the study of organelle DNA in plants , 1997, Molecular ecology.

[36]  W. Powell,et al.  Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. , 1997, Genome.

[37]  G. Vendramin,et al.  Chloroplast microsatellites as markers for paternity analysis in Abies alba. , 1998 .

[38]  Angela Karp,et al.  Molecular tools for screening biodiversity: plants and animals , 1998 .

[39]  R. Bacilieri,et al.  Chloroplast DNA footprints of postglacial recolonization by oaks. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Doebley Molecular Systematics and Crop Evolution , 1992 .

[41]  G. Vendramin,et al.  Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. , 1998 .

[42]  D. Balding,et al.  Genealogical inference from microsatellite data. , 1998, Genetics.

[43]  W. Powell,et al.  An example of microsatellite length variation in the mitochondrial genome of conifers. , 1999, Genome.

[44]  W. Powell,et al.  Polymorphism revealed by simple sequence repeats , 1996 .

[45]  G. Bryan,et al.  An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.