Value Function Approximation on Non-Linear Manifolds for Robot Motor Control
暂无分享,去创建一个
Masashi Sugiyama | Sethu Vijayakumar | Hirotaka Hachiya | Christopher Towell | S. Vijayakumar | Masashi Sugiyama | H. Hachiya | C. Towell
[1] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[2] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.
[3] Tomaso A. Poggio,et al. Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.
[4] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[5] Alexander J. Smola,et al. Learning with kernels , 1998 .
[6] Esa Alhoniemi,et al. SOM Toolbox for Matlab 5 , 2000 .
[7] Michail G. Lagoudakis,et al. Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..
[8] R. Coifman,et al. Diffusion Wavelets , 2004 .
[9] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[10] Sridhar Mahadevan,et al. Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions , 2005, NIPS.
[11] Shie Mannor,et al. Reinforcement learning with Gaussian processes , 2005, ICML.
[12] Sridhar Mahadevan,et al. Proto-value functions: developmental reinforcement learning , 2005, ICML.
[13] Andrew V. Goldberg,et al. Computing the shortest path: A search meets graph theory , 2005, SODA '05.
[14] M. V. Velzen,et al. Self-organizing maps , 2007 .
[15] Masashi Sugiyama,et al. Geodesic Gaussian kernels for value function approximation , 2008, Auton. Robots.