Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors

[1]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[2]  Joseph P. Yuan,et al.  SOAR and the polybasic STIM1 domains gate and regulate the Orai channels , 2009, Nature Cell Biology.

[3]  J. García-Sancho,et al.  Modulation of calcium signalling by intracellular organelles seen with targeted aequorins , 2009, Acta physiologica.

[4]  V. Barr,et al.  Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. , 2008, Molecular biology of the cell.

[5]  G. Lur,et al.  ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP , 2008, Pflügers Archiv - European Journal of Physiology.

[6]  O. Petersen,et al.  Polarized calcium signaling in exocrine gland cells. , 2008, Annual review of physiology.

[7]  Onn Brandman,et al.  STIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels , 2007, Cell.

[8]  L. Hunyady,et al.  Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex*♦ , 2007, Journal of Biological Chemistry.

[9]  J. Putney Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). , 2007, Cell calcium.

[10]  I. Prior,et al.  Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells , 2007, Proceedings of the National Academy of Sciences.

[11]  J. Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[12]  J. Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[13]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[14]  K. Mikoshiba,et al.  IP3 Receptor Types 2 and 3 Mediate Exocrine Secretion Underlying Energy Metabolism , 2005, Science.

[15]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[16]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[17]  O. Gerasimenko,et al.  Stable Golgi-Mitochondria Complexes and Formation of Golgi Ca2+ Gradients in Pancreatic Acinar Cells* , 2005, Journal of Biological Chemistry.

[18]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[19]  K. Fogarty,et al.  Inositol (1,4,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells , 2005, Journal of Cell Science.

[20]  Haruo Kasai,et al.  Stabilization of Exocytosis by Dynamic F-actin Coating of Zymogen Granules in Pancreatic Acini* , 2004, Journal of Biological Chemistry.

[21]  A. Parekh,et al.  Store‐operated Ca2+ entry depends on mitochondrial Ca2+ uptake , 2002, The EMBO journal.

[22]  R. Rizzuto,et al.  The distribution of the endoplasmic reticulum in living pancreatic acinar cells. , 2002, Cell calcium.

[23]  M. Ashby,et al.  Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport , 2001, The EMBO journal.

[24]  A. Tepikin,et al.  The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration , 2000, The EMBO journal.

[25]  O. Petersen,et al.  Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate‐evoked local cytosolic Ca2+ signals , 1999, The EMBO journal.

[26]  M. Hoth,et al.  Mitochondrial Regulation of Store-operated Calcium Signaling in T Lymphocytes , 1997, The Journal of cell biology.

[27]  O. Gerasimenko,et al.  Short pulses of acetylcholine stimulation induce cytosolic Ca2+ signals that are excluded from the nuclear region in pancreatic acinar cells , 1996, Pflügers Archiv - European Journal of Physiology.

[28]  M. Berridge,et al.  Capacitative calcium entry. , 1995, The Biochemical journal.

[29]  M. Fallon,et al.  Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. , 1994, The Journal of biological chemistry.

[30]  M. Itoh,et al.  Occludin: a novel integral membrane protein localizing at tight junctions , 1993, The Journal of cell biology.

[31]  O. Petersen,et al.  Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate , 1993, Cell.

[32]  Y. Miyashita,et al.  Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas , 1993, Cell.

[33]  R. Irvine ‘Quanta’ Ca2+ release and the control of Ca2+ entry by inositol phosphates ‐ a possible mechanism , 1990, FEBS letters.

[34]  P. De Camilli,et al.  Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs , 1978, The Journal of cell biology.