Incremental parameter estimation of kinetic metabolic network models

BackgroundAn efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE). Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified).ResultsIn this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates) exceeds that of metabolites (chemical species). Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA) models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented.ConclusionsThe proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

[1]  C. Daub,et al.  BMC Systems Biology , 2007 .

[2]  E. Voit,et al.  Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. , 2006, Systems biology.

[3]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[4]  Douglas C. Runger Applied Statistics and Probability for Engineers, Third edition , 2003 .

[5]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[6]  Rudiyanto Gunawan,et al.  Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method , 2011, Bioinform..

[7]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[8]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[9]  Dominique Bonvin,et al.  Incremental Identification of Kinetic Models for Homogeneous Reaction Systems , 2006 .

[10]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[11]  W. Marquardt,et al.  Incremental and simultaneous identification of reaction kinetics: methods and comparison , 2004 .

[12]  Radhakrishnan Nagarajan,et al.  Comment on causality and pathway search in microarray time series experiment , 2008, Bioinform..

[13]  Takanori Ueda,et al.  Inference of Genetic Network Using the Expression Profile Time Course Data of Mouse P19 Cells , 2002 .

[14]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[15]  M. Stadtherr,et al.  Validated solution of ODEs with parametric uncertainties , 2006 .

[16]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[17]  Doheon Lee,et al.  Inferring Gene Regulatory Networks from Microarray Time Series Data Using Transfer Entropy , 2007, Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07).

[18]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[19]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[20]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[21]  Eberhard O. Voit,et al.  System estimation from metabolic time-series data , 2008, Bioinform..

[22]  Michiel Kleerebezem,et al.  Effect of Different NADH Oxidase Levels on Glucose Metabolism by Lactococcus lactis: Kinetics of Intracellular Metabolite Pools Determined by In Vivo Nuclear Magnetic Resonance , 2002, Applied and Environmental Microbiology.

[23]  Suzanne M. Paley,et al.  Browsing metabolic and regulatory networks with BioCyc. , 2012, Methods in molecular biology.

[24]  E O Voit,et al.  Estimation of metabolic pathway systems from different data sources. , 2009, IET systems biology.

[25]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[26]  P. Eilers A perfect smoother. , 2003, Analytical chemistry.

[27]  Jonas S Almeida,et al.  Predictive non-linear modeling of complex data by artificial neural networks. , 2002, Current opinion in biotechnology.

[28]  Jonas S. Almeida,et al.  Automated smoother for the numerical decoupling of dynamics models , 2007, BMC Bioinformatics.

[29]  Feng-Sheng Wang,et al.  Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..

[30]  M. Kleerebezem,et al.  In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. , 1999, Biotechnology and bioengineering.

[31]  KonagayaAkihiko,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005 .

[32]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[33]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[34]  Rudiyanto Gunawan,et al.  Parameter identifiability of power-law biochemical system models. , 2010, Journal of biotechnology.

[35]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[36]  H. Akaike A new look at the statistical model identification , 1974 .

[37]  Satoru Miyano,et al.  Bayesian Network and Nonparametric Heteroscedastic Regression for Nonlinear Modeling of Genetic Network , 2003, J. Bioinform. Comput. Biol..