High Resolution Analysis of Impact Sounds and Forces

Impact sounds and vibrations are an important source of information about contact interactions in haptics, robotics, and virtual reality. However, accurate estimation of their parameters for perceptually acceptable resynthesis is difficult with traditional methods. In this paper, we describe the phase-constrained estimation algorithm for estimating modes and amplitudes from impact signals. It is based on ESPRIT and least squares estimation, and produces better resynthesis results than previously used methods

[1]  Eric Krotkov,et al.  Robotic Perception of Material: Experiments with Shape-Invariant Acoustic Measures of Material Type , 1995, ISER.

[2]  Katherine J. Kuchenbecker,et al.  Improving contact realism through event-based haptic feedback , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Dinesh K. Pai,et al.  Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources , 2006, SIGGRAPH 2006.

[4]  William Buxton Using our ears: an introduction to the use of nonspeech audio cues , 1990, Other Conferences.

[5]  Allison M. Okamura,et al.  Reality-based models for vibration feedback in virtual environments , 2001 .

[6]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[7]  Dinesh K. Pai,et al.  Active measurement of contact sounds , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  William W. Gaver What in the World Do We Hear? An Ecological Approach to Auditory Event Perception , 1993 .

[9]  Roland Badeau,et al.  Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées. Application aux signaux de musique , 2005 .

[10]  Mandayam A. Srinivasan,et al.  The Effect of Auditory Cues on the Haptic Perception of Stiffness in Virtual Environments , 1997, Dynamic Systems and Control.

[11]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[12]  Dinesh K. Pai,et al.  The AHI: an audio and haptic interface for contact interactions , 2000, UIST '00.

[13]  Dinesh K. Pai,et al.  FoleyAutomatic: physically-based sound effects for interactive simulation and animation , 2001, SIGGRAPH.

[14]  James F. O'Brien,et al.  Synthesizing Sounds from Physically Based Motion , 2001, SIGGRAPH Video Review on Animation Theater Program.

[15]  Dinesh K. Pai,et al.  The Sounds of Physical Shapes , 1998, Presence.

[16]  Wolfgang Heidrich,et al.  TimbreFields: 3D Interactive Sound Models for Real-Time Audio , 2007, PRESENCE: Teleoperators and Virtual Environments.

[17]  Jian Li,et al.  Amplitude estimation of sinusoidal signals: survey, new results, and an application , 2000, IEEE Trans. Signal Process..

[18]  Robert D. Howe,et al.  Tactile Display of Vibratory Information in Teleoperation and Virtual Environments , 1995, Presence: Teleoperators & Virtual Environments.

[19]  Perry R. Cook,et al.  Real Sound Synthesis for Interactive Applications , 2002 .

[20]  A. Swindlehurst,et al.  Subspace-based signal analysis using singular value decomposition , 1993, Proc. IEEE.

[21]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[22]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[23]  Dinesh K. Pai,et al.  Perception of Material from Contact Sounds , 2000, Presence: Teleoperators & Virtual Environments.

[24]  Dinesh K. Pai,et al.  MEASUREMENTS OF PERCEPTUAL QUALITY OF CONTACT SOUND MODELS , 2002 .

[25]  Robert D. Howe,et al.  Tactile Display of High-Frequency Information in Teleoperation and Virtual Environments. , 1995 .