Optimal Liquidation in a Level-I Limit Order Book for Large-Tick Stocks

We propose a framework to study the optimal liquidation strategy in a limit order book for large-tick stocks, with spread equal to one tick. All order book events (market orders, limit orders and cancellations) occur according to independent Poisson processes, with parameters depending on price move directions. Our goal is to maximise the expected terminal wealth of an agent who needs to liquidate her positions within a fixed time horizon. Assuming that the agent trades (through sell limit order or/and sell market order) only when the price moves, we model her liquidation procedure as a semi-Markov decision process, and compute the semi-Markov kernel using Laplace method in the language of queueing theory. The optimal liquidation policy is then solved by dynamic programming, and illustrated numerically.

[1]  A. Menkveld The Economics of High-Frequency Trading: Taking Stock , 2016 .

[2]  P. Jain,et al.  Financial Market Design and Equity Premium: Electronic Versus Floor Trading , 2004 .

[3]  Michael Kearns,et al.  Reinforcement learning for optimized trade execution , 2006, ICML.

[4]  John W. Mamer Successive Approximations for Finite Horizon, Semi-Markov Decision Processes with Application to Asset Liquidation , 1986, Oper. Res..

[5]  Sebastian Jaimungal,et al.  Optimal execution with limit and market orders , 2014 .

[6]  Warren B. Powell,et al.  An Approximate Dynamic Programming Algorithm for Monotone Value Functions , 2014, Oper. Res..

[7]  Huyen Pham,et al.  Optimal high-frequency trading with limit and market orders , 2011, ArXiv.

[8]  Olivier Guéant,et al.  Optimal Portfolio Liquidation with Limit Orders , 2011, SIAM J. Financial Math..

[9]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[10]  Alexander Schied,et al.  TRANSIENT LINEAR PRICE IMPACT AND FREDHOLM INTEGRAL EQUATIONS , 2010 .

[11]  Warren B. Powell,et al.  An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem , 2009, Math. Oper. Res..

[12]  Björn Hagströmer,et al.  The Diversity of High-Frequency Traders , 2013 .

[13]  Robert Almgren,et al.  Optimal execution with nonlinear impact functions and trading-enhanced risk , 2003 .

[14]  K. Deimling Fixed Point Theory , 2008 .

[15]  Julian Lorenz,et al.  Mean–Variance Optimal Adaptive Execution , 2011 .

[16]  Equity Market Structure Literature Review Part II: High Frequency Trading , 2014 .

[17]  Linqiao Zhao,et al.  A model of limit-order book dynamics and a consistent estimation procedure , 2010 .

[18]  M. Avellaneda,et al.  High-frequency trading in a limit order book , 2008 .

[19]  Huyên Pham,et al.  High Frequency Trading and Asymptotics for Small Risk Aversion in a Markov Renewal Model , 2013, SIAM J. Financial Math..

[20]  J. Bouchaud,et al.  Fokker-Planck description for the queue dynamics of large tick stocks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Xianping Guo,et al.  Finite horizon semi-Markov decision processes with application to maintenance systems , 2011, Eur. J. Oper. Res..

[22]  Stacy Williams,et al.  Limit order books , 2010, 1012.0349.

[23]  Rama Cont,et al.  The Price Impact of Order Book Events , 2010, 1011.6402.

[24]  Alexander Schied,et al.  Optimal execution strategies in limit order books with general shape functions , 2007, 0708.1756.

[25]  Lingjiong Zhu,et al.  A Reduced-Form Model for Level-1 Limit Order Books , 2015 .

[26]  Martin D. Gould,et al.  Queue Imbalance as a One-Tick-Ahead Price Predictor in a Limit Order Book , 2015, 1512.03492.

[27]  Robert Almgren,et al.  Optimal execution of portfolio trans-actions , 2000 .

[28]  A. Irle Stochastic ordering for continuous-time processes , 2003 .

[29]  Joel Hasbrouck,et al.  Low-latency trading $ , 2013 .

[30]  Rama Cont,et al.  Optimal order placement in limit order markets , 2012, 1210.1625.

[31]  C. Moallemi,et al.  A Model for Queue Position Valuation in a Limit Order Book , 2016 .

[32]  E. Denardo CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .

[33]  Ward Whitt,et al.  An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .

[34]  Erhan Bayraktar,et al.  LIQUIDATION IN LIMIT ORDER BOOKS WITH CONTROLLED INTENSITY , 2011, ArXiv.

[35]  Ward Whitt,et al.  Computing Laplace Transforms for Numerical Inversion Via Continued Fractions , 1999, INFORMS J. Comput..

[36]  Maureen O'Hara,et al.  Relative Tick Size and the Trading Environment , 2018, The Review of Asset Pricing Studies.

[37]  Rolf Waeber,et al.  Optimal Asset Liquidation Using Limit Order Book Information , 2012 .

[38]  L. Gillemot,et al.  Statistical theory of the continuous double auction , 2002, cond-mat/0210475.

[39]  Rama Cont,et al.  A Stochastic Model for Order Book Dynamics , 2008, Oper. Res..

[40]  Huyên Pham,et al.  Semi-Markov Model for Market Microstructure , 2013, 1305.0105.

[41]  Sebastian Jaimungal,et al.  Enhancing trading strategies with order book signals , 2015 .

[42]  Mark Schervish,et al.  Instantaneous order impact and high-frequency strategy optimization in limit order books , 2017, 1707.01167.

[43]  Charles-Albert Lehalle,et al.  Simulating and Analyzing Order Book Data: The Queue-Reactive Model , 2013, 1312.0563.

[44]  Costis Maglaras,et al.  Optimal Execution in a Limit Order Book and an Associated Microstructure Market Impact Model , 2015 .

[45]  Mathieu Rosenbaum,et al.  Large tick assets: implicit spread and optimal tick size , 2012, 1207.6325.

[46]  Ryan Francis Donnelly,et al.  Optimal Decisions in a Time Priority Queue , 2017 .

[47]  Julius Bonart,et al.  Latency and Liquidity Provision in a Limit Order Book , 2015 .

[48]  Casey A. Volino,et al.  A First Course in Stochastic Models , 2005, Technometrics.

[49]  R. R. P. Jackson,et al.  Introduction to the Theory of Queues , 1963 .

[50]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[51]  Rama Cont,et al.  Price Dynamics in a Markovian Limit Order Market , 2011, SIAM J. Financial Math..

[52]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[53]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.