Domain Adaptation for Simulation-based Dark Matter Searches with Strong Gravitational Lensing

The identity of dark matter has remained surprisingly elusive. While terrestrial experiments may be able to nail down a model, an alternative method is to identify dark matter based on astrophysical or cosmological signatures. A particularly sensitive approach is based on the unique signature of dark matter substructure in galaxy–galaxy strong lensing images. Machine-learning applications have been explored for extracting this signal. Because of the limited availability of high-quality strong lensing images, these approaches have exclusively relied on simulations. Due to the differences with the real instrumental data, machine-learning models trained on simulations are expected to lose accuracy when applied to real data. Here domain adaptation can serve as a crucial bridge between simulations and real data applications. In this work, we demonstrate the power of domain adaptation techniques applied to strong gravitational lensing data with dark matter substructure. We show with simulated data sets representative of Euclid and Hubble Space Telescope observations that domain adaptation can significantly mitigate the losses in the model performance when applied to new domains. Lastly, we find similar results utilizing domain adaptation for the problem of lens finding by adapting models trained on a simulated data set to one composed of real lensed and unlensed galaxies from the Hyper Suprime-Cam. This technique can help domain experts build and apply better machine-learning models for extracting useful information from the strong gravitational lensing data expected from the upcoming surveys.

[1]  S. Kruk,et al.  Hubble Asteroid Hunter. II. Identifying strong gravitational lenses in HST images with crowdsourcing , 2022, Astronomy & Astrophysics.

[2]  K. C. Wong,et al.  Survey of Gravitationally lensed objects in HSC Imaging (SuGOHI). VIII. New galaxy-scale lenses from the HSC SSP , 2022, Publications of the Astronomical Society of Japan.

[3]  O. I. Wong,et al.  Gems of the Galaxy Zoos—A Wide-ranging Hubble Space Telescope Gap-filler Program , 2022, The Astronomical Journal.

[4]  S. Suyu,et al.  HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program , 2022, Astronomy & Astrophysics.

[5]  C. Dvorkin,et al.  Substructure detection reanalyzed: dark perturber shown to be a line-of-sight halo , 2021, Monthly Notices of the Royal Astronomical Society.

[6]  Evan McDonough,et al.  Cosmic filament spin from dark matter vortices , 2021, Physics Letters B.

[7]  C. Heymans,et al.  High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint , 2021, The Astrophysical Journal.

[8]  Siddharth Mishra-Sharma,et al.  Inferring dark matter substructure with astrometric lensing beyond the power spectrum , 2021, Mach. Learn. Sci. Technol..

[9]  Z. Lukic,et al.  Mining for Strong Gravitational Lenses with Self-supervised Learning , 2021, The Astrophysical Journal.

[10]  F. Courbin,et al.  Search of strong lens systems in the Dark Energy Survey using convolutional neural networks , 2021, Astronomy & Astrophysics.

[11]  M. Buckley,et al.  Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning , 2021, 2104.12789.

[12]  B. Nord,et al.  DeepMerge II: Building Robust Deep Learning Algorithms for Merging Galaxy Identification Across Domains , 2021, Monthly Notices of the Royal Astronomical Society.

[13]  L. Hui Wave Dark Matter , 2021, Annual Review of Astronomy and Astrophysics.

[14]  J. Simon,et al.  An extended halo around an ancient dwarf galaxy , 2020, Nature Astronomy.

[15]  D. Spergel,et al.  Strongly-interacting ultralight millicharged particles , 2020, Physics Letters B.

[16]  Ana Diaz Rivero,et al.  Image segmentation for analyzing galaxy-galaxy strong lensing systems , 2020, Astronomy & Astrophysics.

[17]  K. Lee,et al.  Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI) – VII. Discovery and confirmation of three strongly lensed quasars† , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  JiJi Fan,et al.  Galactic origin of relativistic bosons and XENON1T excess , 2020, Journal of Cosmology and Astroparticle Physics.

[19]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[20]  A. Myers,et al.  Discovering New Strong Gravitational Lenses in the DESI Legacy Imaging Surveys , 2020, The Astrophysical Journal.

[21]  L. Leal-Taixé,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[22]  L. Hui,et al.  Vortices and waves in light dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[23]  J. Rico Gamma-Ray Dark Matter Searches in Milky Way Satellites—A Comparative Review of Data Analysis Methods and Current Results , 2020, Galaxies.

[24]  A. Duffy,et al.  Annual modulation in direct dark matter searches , 2020, Journal of Physics G: Nuclear and Particle Physics.

[25]  S. Gleyzer,et al.  Deep Learning the Morphology of Dark Matter Substructure , 2019, The Astrophysical Journal.

[26]  Gilles Louppe,et al.  Mining for Dark Matter Substructure: Inferring Subhalo Population Properties from Strong Lenses with Machine Learning , 2019, The Astrophysical Journal.

[27]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[28]  M. Freytsis,et al.  Chasing Accreted Structures within Gaia DR2 Using Deep Learning , 2019, The Astrophysical Journal.

[29]  P. Hopkins,et al.  Evidence for a vast prograde stellar stream in the solar vicinity , 2019, Nature Astronomy.

[30]  A. Myers,et al.  Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey , 2019, The Astrophysical Journal.

[31]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[32]  T. Treu,et al.  Probing dark matter structure down to 107 solar masses: flux ratio statistics in gravitational lenses with line-of-sight haloes , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  Jason J. Bramburger,et al.  Dark disk substructure and superfluid dark matter , 2019, Physics Letters B.

[34]  J. Khoury,et al.  Unified superfluid dark sector , 2018, Quantum Theory and Symmetries.

[35]  C. Frenk,et al.  Baryon-induced dark matter cores in the eagle simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[36]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[37]  N. Weiner,et al.  Halometry from astrometry , 2018, Journal of Cosmology and Astroparticle Physics.

[38]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[39]  M. Meneghetti,et al.  The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.

[40]  D. Spergel,et al.  Chiral gravitational waves and baryon superfluid dark matter , 2018, 1801.07255.

[41]  M. Buckley,et al.  Gravitational probes of dark matter physics , 2017, Physics Reports.

[42]  C. Giocoli,et al.  Modelling the line-of-sight contribution in substructure lensing , 2017, 1710.05029.

[43]  Daniel Thomas,et al.  The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations , 2017 .

[44]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[45]  Ana Diaz Rivero,et al.  Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference , 2017, 1706.06111.

[46]  J. A. Garc'ia-Gonz'alez,et al.  Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory , 2017, 1706.01277.

[47]  Asantha Cooray,et al.  LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses , 2017, 1705.05857.

[48]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[49]  Davis,et al.  SHARP – IV. An apparent flux-ratio anomaly resolved by the edge-on disc in B0712+472 , 2017, 1701.06575.

[50]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[51]  S. Alexander,et al.  Gravitationally bound BCS state as dark matter , 2016, 1607.08621.

[52]  J. Bovy,et al.  The number and size of subhalo-induced gaps in stellar streams , 2016, 1606.04946.

[53]  L. A. Antonelli,et al.  Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies , 2016, 1601.06590.

[54]  Curtis McCully,et al.  Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems , 2016, 1601.05417.

[55]  Megan C. Johnson,et al.  HIGH-RESOLUTION MASS MODELS OF DWARF GALAXIES FROM LITTLE THINGS , 2015, 1502.01281.

[56]  J. Chiang,et al.  Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background , 2015, 1501.05464.

[57]  R. Feldmann,et al.  Detecting Dark Matter Substructures around the Milky Way With Gaia , 2013, 1310.2243.

[58]  P. Shapiro,et al.  Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes , 2011, 1106.1256.

[59]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[60]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[61]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[62]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[63]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[64]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[65]  L. Koopmans Gravitational Imaging of CDM Substructure , 2005, astro-ph/0501324.

[66]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[67]  P. Schneider,et al.  Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.

[68]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995, astro-ph/9504041.

[69]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[70]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[71]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[72]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .