Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating

[1]  Jing Mao,et al.  Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries , 2021 .

[2]  Lingjun Li,et al.  Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials , 2021 .

[3]  Zhixing Wang,et al.  Tuning the surface of LiNi0.8Co0.1Mn0.1O2 primary particle with lithium boron oxide toward stable cycling , 2020 .

[4]  Xiaobo Ji,et al.  Pseudo‐Bonding and Electric‐Field Harmony for Li‐Rich Mn‐Based Oxide Cathode , 2020, Advanced Functional Materials.

[5]  Lingjun Li,et al.  Solid-state synthesis of lanthanum-based oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries , 2020 .

[6]  Dong Zhao,et al.  Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications. , 2019, Small.

[7]  S. Dou,et al.  Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. , 2019, Small.

[8]  J. Son,et al.  Novel Core-Shell-Type Design of Na0.5[Li0.5(Ni0.8Co0.1Mn0.1)1-x(Ni0.5 Co0.1Mn0.4)x]O₂ Cathode Material for Sodium-Ion Batteries. , 2019, Journal of Nanoscience and Nanotechnology.

[9]  M. Deschamps,et al.  Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material , 2019, Nature Communications.

[10]  Lingjun Li,et al.  Effect of Controlled-Atmosphere Storage and Ethanol Rinsing on NaNi0.5Mn0.5O2 for Sodium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[11]  W. Gui,et al.  Suppressing the Voltage Decay and Enhancing the Electrochemical Performance of Li1.2Mn0.54Co0.13Ni0.13O2by Multifunctional Nb2O5Coating , 2018, Energy Technology.

[12]  M. Yuan,et al.  Enhanced cycling stability of Mg–F co-modified LiNi 0.6 Co 0.2 Mn 0.2–y Mg y O 2–z F z for lithium-ion batteries , 2018, Transactions of Nonferrous Metals Society of China.

[13]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[14]  Ya‐Xia Yin,et al.  Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. , 2017, Journal of the American Chemical Society.

[15]  Q. Yan,et al.  Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? , 2017 .

[16]  Ya‐Xia Yin,et al.  Ti‐Substituted NaNi0.5Mn0.5‐xTixO2 Cathodes with Reversible O3−P3 Phase Transition for High‐Performance Sodium‐Ion Batteries , 2017, Advanced materials.

[17]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[18]  Zhixing Wang,et al.  A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni 0.8 Co 0.1 Mn 0.1 O 1.1 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 , 2017 .

[19]  Xiongwei Wu,et al.  Nanostructured positive electrode materials for post-lithium ion batteries , 2016 .

[20]  K. Kubota,et al.  Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2. , 2016, Angewandte Chemie.

[21]  Faxing Wang,et al.  Electrode materials with tailored facets for electrochemical energy storage. , 2016, Nanoscale horizons.

[22]  T. Shibata,et al.  Scaling relation between renormalized discharge rate and capacity in NaxCoO2 films , 2015 .

[23]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[24]  Robert W. Black,et al.  Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions , 2015 .

[25]  Juliette Billaud,et al.  β-NaMnO2: a high-performance cathode for sodium-ion batteries. , 2014, Journal of the American Chemical Society.

[26]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[27]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[28]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[29]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[30]  J. Molenda,et al.  Electronic and electrochemical properties of nickel bronze, NaxNiO2 , 1990 .

[31]  Yuliang Cao,et al.  Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating , 2019, Acta Physico-Chimica Sinica.

[32]  J. Tarascon,et al.  Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications , 2018 .

[33]  Xiaobo Ji,et al.  Effect of lithium content on electrochemical property of Li1+x(Mn0.6Ni0.2Co0.2)1-xO2 (0≤x≤0.3) composite cathode materials for rechargeable lithium-ion batteries , 2018 .

[34]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[35]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[36]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[37]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .