RANK-ONE APPROXIMATION OF JOINT SPECTRAL RADIUS OF FINITE MATRIX FAMILY ∗

In this paper, we show that any finite set of rank-one matrices satisfies the finite- ness property under the linear programming framework. An explicit formula for the computation of joint/generalized spectral radius for this class of matrix family is derived. We further study finite sets of general matrices through constructing rank-one approximations based on singular value decom- position (SVD) and a new characterization of joint/generalized spectral radius is obtained. Several well-known examples as well as their numerical simulations are provided to illustrate the theoretical outcomes.

[1]  Nicola Guglielmi,et al.  Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..

[2]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[3]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[4]  Carla Manni,et al.  Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas , 2011 .

[5]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[6]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[7]  Ian D. Morris Rank one matrices do not contribute to the failure of the finiteness property , 2011 .

[8]  Nicola Guglielmi,et al.  An algorithm for finding extremal polytope norms of matrix families , 2008 .

[9]  Xiongping Dai,et al.  The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one , 2011, ArXiv.

[10]  Yu Huang,et al.  Criteria of Stability for Continuous-Time Switched Systems by Using Liao-Type Exponents , 2009, SIAM J. Control. Optim..

[11]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[12]  Amir Ali Ahmadi,et al.  Joint spectral radius of rank one matrices and the maximum cycle mean problem , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[13]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[14]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[15]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[16]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[17]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[18]  M. Zennaro,et al.  Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .

[19]  N. Dyn,et al.  Generalized Refinement Equations and Subdivision Processes , 1995 .

[20]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[21]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[22]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .

[23]  M. Maesumi An efficient lower bound for the generalized spectral radius , 1996 .

[24]  V. Protasov Asymptotic behaviour of the partition function , 2000 .

[25]  Xinlong Zhou,et al.  Characterization of Continuous, Four-Coefficient Scaling Functions via Matrix Spectral Radius , 2000, SIAM J. Matrix Anal. Appl..

[26]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[27]  Vincent D. Blondel,et al.  Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..

[28]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[29]  I. Daubechies,et al.  Corrigendum/addendum to: Sets of matrices all infinite products of which converge , 2001 .

[30]  Владимир Юрьевич Протасов,et al.  Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .

[31]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[32]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[33]  Jianhong Xu ON THE TRACE CHARACTERIZATION OF THE JOINT SPECTRAL RADIUS , 2010 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Xiongping Dai,et al.  Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View , 2008, SIAM J. Control. Optim..

[36]  Vincent D. Blondel,et al.  Overlap-free words and spectra of matrices , 2007, Theor. Comput. Sci..

[37]  Xinlong Zhou,et al.  Characterization of joint spectral radius via trace , 2000 .

[38]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[39]  V. Protasov The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[40]  M. Maesumi Optimal norms and the computation of joint spectral radius of matrices , 2008 .

[41]  V. Kozyakin A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[42]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[43]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[44]  V. Kozyakin ITERATIVE BUILDING OF BARABANOV NORMS AND COMPUTATION OF THE JOINT SPECTRAL RADIUS FOR MATRIX SETS , 2008, 0810.2154.

[45]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[46]  L. Gurvits,et al.  A note on common quadratic Lyapunov functions for linear inclusions: Exact results and Open Problems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[47]  I. Morris Criteria for the stability of the finiteness property and for the uniqueness of Barabanov norms , 2009, 0909.2800.