Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application

This paper reports on the defect correlated self-quenching and spectroscopic investigation of calcium titanate (CaTiO3) phosphors. A series of CaTiO3 phosphors doped with trivalent europium (Eu3+) and codoped with potassium (K+) ions were prepared by the solid state reaction method. The X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure. The scanning electron microscopy images revealed the irregular morphology of the prepared phosphors consisting out of μm sized diameter particles. The Eu3+ doped phosphors illuminated with ultraviolet light showed the characteristic red luminescence corresponding to the 5D0→7FJ transitions of Eu3+. As a charge compensator, K+ ions were incorporated into the CaTiO3:Eu3+ phosphors, which enhanced the photoluminescence (PL) intensities depending on the doping concentration of K+. The concentratio...

[1]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[2]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[3]  Hongquan Yu,et al.  Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor , 2011 .

[4]  H. Takashima,et al.  Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition , 2006 .

[5]  D. L. Dexter,et al.  Theory of Concentration Quenching in Inorganic Phosphors , 1954 .

[6]  S. Sharma,et al.  Swift heavy ion induced structural and optical properties of Y2O3:Eu3+ nanophosphor , 2013 .

[7]  Hongjie Zhang,et al.  Hybrid materials based on lanthanide organic complexes: a review. , 2013, Chemical Society reviews.

[8]  Xiuyun Sun,et al.  Electron Spin Resonance Investigations and Compensation Mechanism of Europium-Doped Barium Titanate Ceramics , 2006 .

[9]  H. You,et al.  The change of Eu3+-surroundings in the system Al2O3-B2O3 containing Eu3+ ions , 1999 .

[10]  A. Parchur,et al.  Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. , 2011, Dalton transactions.

[11]  E. Longo,et al.  CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach , 2010 .

[12]  S. Sharma,et al.  Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. , 2013, Dalton transactions.

[13]  Sebastian Wille,et al.  Fabrication of Macroscopically Flexible and Highly Porous 3D Semiconductor Networks from Interpenetrating Nanostructures by a Simple Flame Transport Approach , 2013 .

[14]  G. Fu,et al.  Multiwavelength excited white-emitting phosphor Dy3+-activated Ba3Bi(PO4)3 , 2012 .

[15]  Yung-Tang Nien,et al.  Enhancement of Photoluminescence and Color Purity of CaTiO3:Eu Phosphor by Li Doping , 2012 .

[16]  S. Sharma,et al.  Near-white-emitting phosphors based on tungstate for phosphor-converted light-emitting diodes. , 2013, Applied optics.

[17]  Yan Chen,et al.  Field emission from aligned high-density graphitic nanofibers , 1998 .

[18]  S. C. Gadkari,et al.  Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. , 2011, Dalton transactions.

[19]  J. Tauc,et al.  States in the gap , 1972 .

[20]  H. Kay,et al.  Structure and properties of CaTiO3 , 1957 .

[21]  S. Sharma,et al.  CaMoO4:Dy3+,K+near White Light Emitting Phosphor: Structural, Optical and Dielectric Properties , 2013 .

[22]  Q. Zhang,et al.  Enhanced photoluminescence of Ca2Al2SiO7:Eu3+ by charge compensation method , 2007 .

[23]  L. Carlos,et al.  Photoluminescence and local structure of Eu(III)-doped zirconium silicates , 2004 .

[24]  Ru‐Shi Liu,et al.  Controlling The Activator Site To Tune Europium Valence in Oxyfluoride Phosphors , 2012 .

[25]  G. Blasse,et al.  Energy transfer between inequivalent Eu2+ ions , 1986 .

[26]  S. Sharma,et al.  Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization , 2012 .

[27]  Tai-Yuan Lin,et al.  Photoluminescence Enhancement of Y3Al5O12:Ce Nanoparticles Using HMDS , 2008 .

[28]  Yen-Hwei Chang,et al.  Synthesis and Luminescent Properties of MgIn2 − x Ga x O4 : Eu3 + Phosphors , 2005 .

[29]  S. Sharma,et al.  Ca(1-x-y)Dy(x)K(y)WO4: a novel near UV converting phosphor for white light emitting diode. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[30]  Jinsheng Liao,et al.  Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. , 2010, Physical chemistry chemical physics : PCCP.

[31]  E. Longo,et al.  The role of oxygen vacancy in the photoluminescence property at room temperature of the CaTiO3 , 2009 .

[32]  Yanhua Song,et al.  White-light emission from a single-emitting-component Ca9Gd(PO4)7:Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes , 2010 .

[33]  Ilker S. Bayer,et al.  Controlled growth of gold nanoparticles induced by ion irradiation: An in situ x-ray diffraction study , 2007 .

[34]  P. Dorenbos,et al.  About red afterglow in Pr3+ doped titanate perovskites , 2009 .

[35]  Yen-Hwei Chang,et al.  Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors , 2007 .

[36]  B. D. Raju,et al.  Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses , 2012 .

[37]  M. Schuurmans,et al.  On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions , 1983 .

[38]  S. Rai,et al.  Improvement of blue, white and NIR emissions in YPO4:Dy3+ nanoparticles on co-doping of Li+ ions. , 2012, Dalton transactions.

[39]  Norihiko Sakamoto,et al.  Photoluminescence Properties of Pr-Doped (Ca,Sr,Ba)TiO3 , 2005 .

[40]  S. Chu,et al.  Energy Transfer and Thermal Quenching Behaviors of CaLa2 ( MoO4 ) 4 : Sm3 + , Eu3 + Red Phosphors , 2011 .

[41]  Y. Mishra,et al.  Swift heavy ion-induced dissolution of gold nanoparticles in silica matrix , 2007 .

[42]  C. McCamy,et al.  Correlated color temperature as an explicit function of chromaticity coordinates , 1992 .

[43]  Vijay Kumar,et al.  Doped zinc oxide window layers for dye sensitized solar cells , 2013 .

[44]  S. Sharma,et al.  Band gap, CIE and trap depth parameters of rare earth molybdate phosphors for optoelectronic applications , 2013 .

[45]  G. Exarhos,et al.  Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution , 2004 .

[46]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[47]  R. Adelung,et al.  A Novel Concept for Self‐Reporting Materials: Stress Sensitive Photoluminescence in ZnO Tetrapod Filled Elastomers , 2013, Advanced materials.

[48]  S. Cho,et al.  Synthesis and Low‐Voltage Characteristics of CaTiO3 : Pr Luminescent Powders , 1996 .

[49]  A. Benker,et al.  Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .

[50]  M. Gu,et al.  Enhanced luminescence through ion-doping-induced higher energy phonons in GdTaO4:Eu3+ phosphor , 2009 .

[51]  H. Swart,et al.  Swift heavy ion irradiation induced modification in structural, optical and luminescence properties of Y2O3:Tb3+ nanophosphor , 2014 .

[52]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[53]  S. Gorb,et al.  Joining the Un‐Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers , 2012, Advanced materials.