Laser chemical vapour deposition: materials, modelling, and process control

Abstract Laser chemical vapour deposition (LCVD) is a new manufacturing process that holds great potential for the production of small and complex metal and ceramic parts. Recent research significant to LCVD is reviewed, summarising the general state of knowledge in the field, and discussing important challenges that remain. The basics of the LCVD process and the various deposition techniques, including: photolytic versus pyrolytic deposition and fibre growth versus direct writing methods, are considered. A comprehensive table of materials deposited with LCVD is presented, sorted geometrically into fibres, dots, and lines. The application of heat transfer and chemical kinetic models to the LCVD process as a means for predicting deposit properties is described. The deposition process is considered with respect to efforts to increase deposition rates and to control deposit shapes. Modern process control techniques for measuring deposition temperature and growth rate are also discussed. Finally, a survey of mechanical, electrical, and optical applications is presented.

[1]  H. Bergh,et al.  High‐speed laser chemical vapor deposition of copper: A search for optimum conditions , 1989 .

[2]  H. Westberg,et al.  Laser-induced chemical vapour deposition of TiSi2: Aspects of deposition process, microstructure and resistivity , 1991 .

[3]  Stefan Johansson,et al.  Free‐standing silicon microstructures fabricated by laser chemical processing , 1993 .

[4]  V. Hopfe,et al.  IR-laser CVD of TiB2, TiCx and TiCxNy coatings on carbon fibres , 1992 .

[5]  R. Jackson,et al.  Laser‐induced chemical vapor deposition of aluminum , 1989 .

[6]  S. Kishida,et al.  Thick gold-film deposition by high-repetition visible pulsed-laser chemical vapor deposition , 1994 .

[7]  H. Suhr,et al.  Laser induced CVD of gold using new precursors , 1992 .

[8]  F. Wallenberger,et al.  Strong, Pure, and Uniform Carbon Fibers Obtained Directly from the Vapor Phase , 1993, Science.

[9]  S. Allen,et al.  Experimental determination of laser heated surface temperature distributions , 1987 .

[10]  H. Reichl,et al.  Laser direct writing of gold to repair defective lines in thin-film metallizations , 1993 .

[11]  L. S. Nelson,et al.  Formation of thin rods of pyrolytic carbon by heating with a focused carbon dioxide laser , 1972 .

[12]  B. Robertson,et al.  Chemical vapor deposition precursor chemistry. 5. The photolytic laser deposition of aluminum thin films by chemical vapor deposition , 1996 .

[13]  K. Jensen,et al.  Combined experimental and modeling studies of laser‐assisted chemical vapor deposition of copper from copper(I)‐hexafluoroacetylacetonate trimethylvinylsilane , 1994 .

[14]  F. Wallenberger Inorganic fibres and microfabricated parts by laser assisted chemical vapour deposition (LCVD) : Structures and properties , 1997 .

[15]  J. Nieuwkoop,et al.  CO2-laser-induced chemical vapour deposition of TiB2 , 1991 .

[16]  Olaf Lehmann,et al.  Laser-Driven Movement of Three-Dimensional Microstructures Generated by Laser Rapid Prototyping , 1995, Science.

[17]  K. Piglmayer,et al.  On the reaction kinetics in laser-induced pyrolytic chemical processing , 1990 .

[18]  Ricardo Izquierdo,et al.  Laser direct writing of tungsten from WF6 , 1992 .

[19]  J. Elders,et al.  Laser‐induced chemical vapor deposition of titanium diboride , 1994 .

[20]  James F. Gibbons,et al.  Laser and electron-beam solid interactions and materials processing : proceedings of the Materials Research Society Annual Meeting, November 1980, Copley Plaza Hotel, Boston, Massachusetts, U.S.A. , 1981 .

[21]  U. Kempfer,et al.  New types of periodic structures in laser-induced chemical vapor deposition , 1986 .

[22]  R. Kant,et al.  Laser-Induced Heating of a Multilayered Medium Resting on a Half-Space: Part I—Stationary Source , 1988 .

[23]  T. Kodas,et al.  Real time optical profilometry as a probe of rates of laser‐induced chemical vapor deposition , 1987 .

[24]  R. Salathé,et al.  Laser generated microstructures , 1985 .

[25]  F. Wallenberger,et al.  Amorphous silicon nitride fibers grown from the vapor phase , 1994 .

[26]  D. Bäuerle,et al.  Lateral growth rates in laser CVD of microstructures , 1984 .

[27]  C. Lavoie,et al.  Modeling KrF excimer laser induced deposition of titanium from titanium tetrachloride , 1992 .

[28]  R. Ebert,et al.  Laser-induced chemical vapour deposition of conductive and insulating thin films , 1992 .

[29]  D. Bäuerle,et al.  Kr+ laser‐induced chemical vapor deposition of W , 1987 .

[30]  J. Wilson,et al.  Morphological and structural changes in laser CVD of silicon: comparison of theoretical temperature calculations with experimental results , 1989 .

[31]  F. Houle,et al.  In situ Fourier transform infrared spectroscopy and stochastic modeling of surface chemistry of amorphous silicon growth , 1998 .

[32]  W. Sinke,et al.  Excimer laser induced deposition of tungsten on silicon , 1989 .

[33]  O. Lehmann,et al.  Three-dimensional laser direct writing of electrically conducting and isolating microstructures , 1994 .

[34]  P. Chen,et al.  Atmospheric laser chemical vapour deposition of iron-carbon composites , 1995 .

[35]  R. Salathé,et al.  Efficient luminescence band created in (Al, Ga)As multilayers by athermal laser processing , 1981 .

[36]  P. Lorenz,et al.  Laser based chemical vapour deposition of titanium nitride coatings , 1994 .

[37]  J. Mazumder,et al.  Three-dimensional transient thermal analysis for laser chemical vapor deposition on uniformly moving finite slabs , 1989 .

[38]  T. H. Baum,et al.  Laser-induced chemical vapor deposition of metals for microelectronics technology , 1992 .

[39]  R. Salathé,et al.  Laser-Initiated Metal-Deposition on Gaas Substrates , 1981 .

[40]  M. Boman,et al.  Inorganic fibers and microstructures directly from the vapor phase , 1994 .

[41]  Melvin Lax,et al.  Temperature rise induced by a laser beam , 1977 .

[42]  L. O'connor Developing bigger micromachines , 1996 .

[43]  M. Boman,et al.  Laser-assisted chemical vapor deposition of hard and refractory binary compounds , 1991 .

[44]  G. Wahl,et al.  Simulation of laser CVD , 1990 .

[45]  J. Elders,et al.  Laser-induced CVD of titanium diboride and the influence of atomic hydrogen , 1993 .

[46]  S. Allen,et al.  Real time measurement of deposition initiation and rate in laser chemical vapor deposition , 1985 .

[47]  James L. Maxwell,et al.  Real-time volumetric growth rate measurements and feedback control of three-dimensional laser chemical vapor deposition , 1998 .

[48]  Daniel Braichotte,et al.  The photolytic laser chemical vapor deposition rate of platinum, its dependence on wavelength, precursor vapor pressure, light intensity, and laser beam diameter , 1990 .

[49]  F. Wallenberger Rapid Prototyping Directly from the Vapor Phase , 1995, Science.

[50]  Mats Boman,et al.  Kinetics in thermal laser-assisted chemical vapour deposition of titanium carbide , 1992 .

[51]  D. Bäuerle,et al.  Laser induced chemical vapor deposition of carbon , 1981 .

[52]  S. Allen,et al.  Laser chemical vapor deposition of selected area Fe and W films , 1983 .

[53]  S. Bedair,et al.  Low temperature selective epitaxy of III V compounds by laser assisted chemical vapor deposition , 1988 .

[54]  R. Hendel,et al.  Temperature profiles induced by a scanning cw laser beam , 1982 .

[55]  J. Mazumder,et al.  In situ laser‐induced fluorescence studies of laser chemical vapor deposition of TiN thin films , 1994 .

[56]  K. Mutoh,et al.  Soft‐x‐ray multilayer mirrors with laterally varying film thicknesses fabricated using laser‐beam‐scanning chemical vapor deposition , 1995 .

[57]  T. R. Anthony,et al.  Heat treating and melting material with a scanning laser or electron beam , 1977 .

[58]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[59]  Robby Ebert,et al.  Titanium nitride thin film deposition by laser CVD , 1996 .

[60]  W. Sinke,et al.  Kinetics of excimer-laser induced CVD of W , 1992 .

[61]  A. Lecours,et al.  Laser-induced damaged formation and tungsten deposition on GaAs , 1992 .

[62]  Stefan Johansson,et al.  Microfabrication of three-dimensional boron structures by laser chemical processing , 1992 .

[63]  Yushu Zhang,et al.  Theoretical study on the fabrication of a microlens using the excimer laser chemical vapor deposition technique , 1996 .

[64]  F. Houle,et al.  Laser chemical vapor deposition of copper , 1985 .

[65]  Jogender Singh,et al.  Laser‐enhanced synthesis and processing of diamond films from liquid hydrocarbons , 1993 .

[66]  John C. Roberts,et al.  Direct writing of GaAs optical waveguides by laser‐assisted chemical vapor deposition , 1996 .

[67]  F. Wallenberger,et al.  Strong, small diameter, boron fibers by LCVD , 1992 .

[68]  T. Rantala,et al.  A numerical simulation method for the laser‐induced temperature distribution , 1989 .

[69]  D. Bäuerle,et al.  Rapid Determination of Apparent Activation Energies in Chemical Vapor Deposition , 1983 .

[70]  H. Marcus,et al.  Design of a Closed Loop Computer Controlled System for Selective Area Laser Deposition. I. Laser Systems, Gasflow, and Substrate Temperature Control , 1996 .

[71]  K. K. Yee Protective coatings for metals by chemical vapour deposition , 1978 .

[72]  T. H. Baum,et al.  LCVD of copper: Deposition rates and deposit shapes , 1986 .

[73]  O. Lehmann,et al.  Generation of three-dimensional free-standing metal micro-objects by Laser Chemical processing , 1991 .

[74]  D. N. Mashburn,et al.  Low temperature photon-controlled growth of thin films and multilayered structures , 1989 .

[75]  J. Wilson,et al.  Laser writing of high-purity gold lines , 1989 .

[76]  P. Molian,et al.  Laser chemical vapor deposition of fluorinated diamond thin films for solid lubrication , 1993 .

[77]  T. Kodas,et al.  Surface temperature rise in multilayer solids induced by a focused laser beam , 1987 .

[78]  J. Mazumder,et al.  Kinetic studies of laser chemical vapor deposition of titanium nitride , 1994 .

[79]  W. J. Lackey,et al.  Ceramic coatings for advanced heat engines - A review and projection , 1987 .

[80]  J. Elders,et al.  Photochemical vapor deposition of titaniumdiboride , 1990 .

[81]  V. Shanov,et al.  Laser‐induced chemical vapor deposition of aluminum from trimethylamine alane , 1994 .

[82]  G. Haidemenopoulos,et al.  Pyrolytic laser-based chemical vapour deposition of TIC coatings , 1995 .

[83]  S. Bedair,et al.  Laser selective deposition of GaAs on Si , 1986 .

[84]  D. Tonneau,et al.  Kinetics of laser thermal decomposition of trimethylamine alane , 1995 .

[85]  M. Pérez-Amor,et al.  Amorphous germanium layers prepared by UV-photo-induced chemical vapour deposition , 1996 .

[86]  Susan D. Allen,et al.  Laser chemical vapor deposition: A technique for selective area deposition , 1981 .

[87]  A. J. Silvestre,et al.  Structure and morphology of titanium nitride films deposited by laser-induced chemical vapour deposition , 1994 .

[88]  A. J. Silvestre,et al.  CO2 laser induced CVD of TiN , 1992 .

[89]  S. Boughaba,et al.  Deposition of micron-size nickel lines by argon-ion laser-assisted decomposition of nickel tetracarbonyl , 1993 .

[90]  H. Bergh,et al.  Growth rates and electrical conductivity of microscopic ohmic contacts fabricated by laser chemical vapor deposition of platinum , 1987 .

[91]  S. Allen,et al.  Summary Abstract: Properties of several types of films deposited by laser CVD , 1982 .

[92]  G. Higashi The chemistry of alkyl-aluminum compounds during laser-assisted chemical vapor deposition , 1989 .

[93]  A. J. Silvestre,et al.  Investigation of the microstructure, chemical composition and lateral growth kinetics of TiN films deposited by laser-induced chemical vapour deposition , 1994 .

[94]  Arunava Gupta,et al.  CO2 laser‐induced chemical vapor deposition of titanium silicide films , 1985 .

[95]  K. Jensen,et al.  Pyrolytic laser assisted chemical vapor deposition of Al from dimethylethylamine‐alane: Characterization and a new two‐step writing process , 1994 .