Perturbation theory for Hermitian quadratic eigenvalue problem - damped and simultaneously diagonalizable systems

Abstract The main contribution of this paper is a novel approach to the perturbation theory of a structured Hermitian quadratic eigenvalue problems ( λ 2 M + λ D + K ) x = 0 . We propose a new concept without linearization, considering two structures: general quadratic eigenvalue problems (QEP) and simultaneously diagonalizable quadratic eigenvalue problems (SDQEP). Our first two results are upper bounds for the difference | ∥ X 2 * M X ˜ 1 ∥ F 2 − ∥ X 2 * M X 1 ∥ F 2 | , and for ∥ X 2 * M X ˜ 1 − X 2 * M X 1 ∥ F , where the columns of X 1 = [ x 1 , … , x k ] and X 2 = [ x k + 1 , … , x n ] are linearly independent right eigenvectors and M is positive definite Hermitian matrix. As an application of these results we present an eigenvalue perturbation bound for SDQEP. The third result is a lower and an upper bound for ∥ sin Θ ( X 1 , X ˜ 1 ) ∥ F , where Θ is a matrix of canonical angles between the eigensubspaces X 1 and X ˜ 1 , X 1 is spanned by the set of linearly independent right eigenvectors of SDQEP and X ˜ 1 is spanned by the corresponding perturbed eigenvectors. The quality of the mentioned results have been illustrated by numerical examples.

[1]  Christos Levcopoulos,et al.  Optimal Algorithms for Complete Linkage Clustering in d Dimensions , 2002, MFCS.

[2]  Ninoslav Truhar,et al.  Optimal Direct Velocity Feedback , 2013, Appl. Math. Comput..

[3]  Gene H. Golub,et al.  A Subspace Approximation Method for the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[4]  Ninoslav Truhar,et al.  Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem , 2015 .

[5]  Ren-Cang Li,et al.  THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM , 2015, Forum of Mathematics, Sigma.

[6]  Peter Benner,et al.  Dimension reduction for damping optimization in linear vibrating systems , 2011 .

[7]  Paolo L. Gatti Applied structural and mechanical vibrations , 1999 .

[8]  B. Datta,et al.  Quadratic Inverse Eigenvalue Problems, Active Vibration Control and Model Updating , 2009 .

[9]  Ninoslav Truhar,et al.  Optimization of material with modal damping , 2012, Appl. Math. Comput..

[10]  Peter Benner,et al.  Optimal damping of selected eigenfrequencies using dimension reduction , 2013, Numer. Linear Algebra Appl..

[11]  Ninoslav Truhar,et al.  An Efficient Method for Estimating the Optimal Dampers' Viscosity for Linear Vibrating Systems Using Lyapunov Equation , 2009, SIAM J. Matrix Anal. Appl..

[12]  Residual motion in damped linear systems , 2004 .

[13]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[14]  K. Veselic,et al.  Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .

[15]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[16]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[17]  Sondipon Adhikari,et al.  Damping modelling using generalized proportional damping , 2006 .

[18]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[19]  S. M. Shahruz,et al.  Approximate Decoupling of Weakly Nonclassically Damped Linear Second-Order Systems Under Harmonic Excitations , 1993 .