Perturbation theory for Hermitian quadratic eigenvalue problem - damped and simultaneously diagonalizable systems
暂无分享,去创建一个
[1] Christos Levcopoulos,et al. Optimal Algorithms for Complete Linkage Clustering in d Dimensions , 2002, MFCS.
[2] Ninoslav Truhar,et al. Optimal Direct Velocity Feedback , 2013, Appl. Math. Comput..
[3] Gene H. Golub,et al. A Subspace Approximation Method for the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..
[4] Ninoslav Truhar,et al. Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem , 2015 .
[5] Ren-Cang Li,et al. THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM , 2015, Forum of Mathematics, Sigma.
[6] Peter Benner,et al. Dimension reduction for damping optimization in linear vibrating systems , 2011 .
[7] Paolo L. Gatti. Applied structural and mechanical vibrations , 1999 .
[8] B. Datta,et al. Quadratic Inverse Eigenvalue Problems, Active Vibration Control and Model Updating , 2009 .
[9] Ninoslav Truhar,et al. Optimization of material with modal damping , 2012, Appl. Math. Comput..
[10] Peter Benner,et al. Optimal damping of selected eigenfrequencies using dimension reduction , 2013, Numer. Linear Algebra Appl..
[11] Ninoslav Truhar,et al. An Efficient Method for Estimating the Optimal Dampers' Viscosity for Linear Vibrating Systems Using Lyapunov Equation , 2009, SIAM J. Matrix Anal. Appl..
[12] Residual motion in damped linear systems , 2004 .
[13] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[14] K. Veselic,et al. Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .
[15] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[16] Françoise Tisseur,et al. Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .
[17] Sondipon Adhikari,et al. Damping modelling using generalized proportional damping , 2006 .
[18] F. B. Ellerby,et al. Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.
[19] S. M. Shahruz,et al. Approximate Decoupling of Weakly Nonclassically Damped Linear Second-Order Systems Under Harmonic Excitations , 1993 .