Geometric modeling, isogeometric analysis and the finite cell method

The advent of isogeometric analysis (IGA) using the same basis functions for design and analysis constitutes a milestone in the unification of geometric modeling and numerical simulation. However, an important class of geometric models based on the CSG (Constructive Solid Geometry) concept such as trimmed NURBS surfaces do not fully support the isogeometric paradigm, since basis functions do not explicitly represent the boundary. The finite cell method (FCM) is a high-order fictitious domain method, which offers simple meshing of potentially complex domains into a structured grid of cuboid cells, while still achieving exponential rates of convergence for smooth problems. In the present paper, we first discuss the possibility to directly couple the finite cell method to CSG, without any necessity for meshing the three-dimensional domain, and then explore a combination of the best of the two approaches IGA and FCM, closely following ideas of the recently introduced shell FCM. The resulting finite cell extension to isogeometric analysis achieves a truly straightforward transfer of a trimmed NURBS surface into an analysis suitable NURBS basis, while benefiting from the favorable properties of the high-order and high-continuity basis functions. Accuracy and efficiency of the new approach are demonstrated by a numerical benchmark, and its versatility is outlined by the analysis of different trimmed design variants of a brake disk.

[1]  D. T. Pham,et al.  PARAMETRIC AND FEATURE-BASED CAD/CAM CONCEPTS, TECHNIQUES, APPLICATIONS by J.J. Shah and M. Mäntylä, Wiley, Chichester, 1995, 619 pp., ISBN 0–471–00214–3 (£55; HBK) , 1998, Robotica.

[2]  O. Zienkiewicz,et al.  A note on mass lumping and related processes in the finite element method , 1976 .

[3]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[4]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[5]  Max K. Agoston Computer Graphics And Geometric Modelling: Implementation & Algorithms , 2005 .

[6]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[7]  T. Hughes,et al.  Special issue on computational geometry and analysis , 2010 .

[8]  Ernst Rank,et al.  p-FEM applied to finite isotropic hyperelastic bodies , 2003 .

[9]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[10]  Barna A. Szabó,et al.  Quasi-regional mapping for the p-version of the finite element method , 1997 .

[11]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[12]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[13]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[14]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[15]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[16]  Z. Pammer,et al.  The p–version of the finite–element method , 2014 .

[17]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[18]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[19]  J. Z. Zhu,et al.  The finite element method , 1977 .

[20]  Ghang Lee,et al.  Parametric 3D modeling in building construction with examples from precast concrete , 2004 .

[21]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[22]  M. A. Hyman,et al.  Non-iterative numerical solution of boundary-value problems , 1952 .

[23]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[24]  Markus H. Gross,et al.  CSG tree rendering for point-sampled objects , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[25]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[26]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[27]  Ivo Babuska,et al.  V&V in Computational Engineering and Science. Part 1: Basic Concepts , 2003 .

[28]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[29]  E. Rank,et al.  Topology optimization using the finite cell method , 2012 .

[30]  Michael J. Miller,et al.  Introduction to Computer Graphics , 1984, Developing Graphics Frameworks with Python and OpenGL.

[31]  Alexander Düster,et al.  Non-standard bone simulation: interactive numerical analysis by computational steering , 2011, Comput. Vis. Sci..

[32]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[33]  Ernst Rank,et al.  Finite cell method , 2007 .

[34]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[35]  Ernst Rank,et al.  Topology optimization based on the finite cell method , 2010 .

[36]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[37]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[38]  S. H. Lui,et al.  Spectral domain embedding for elliptic PDEs in complex domains , 2009 .

[39]  Ernst Rank,et al.  Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .

[40]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[41]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[42]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[43]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[44]  Olivier Pironneau,et al.  A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .

[45]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[46]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[47]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[48]  Rainald Löhner,et al.  Adaptive Embedded/Immersed Unstructured Grid Techniques , 2007 .

[49]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[50]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[51]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[52]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[53]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[54]  Spencer J. Sherwin,et al.  A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .

[55]  Jami J. Shah,et al.  Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications , 1995 .

[56]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[57]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[58]  Y. Bazilevs,et al.  The B-Spline version of the Finite Cell Method for linear and nonlinear analysis of complex geometry , 2011 .

[59]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[60]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[61]  Vadim Shapiro,et al.  Meshfree modeling and analysis of physical fields in heterogeneous media , 2005, Adv. Comput. Math..

[62]  Max K. Agoston,et al.  Computer graphics and geometric modeling , 2013 .

[63]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .

[64]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[65]  Ernst Rank,et al.  pq-Adaptive solid finite elements for three-dimensional plates and shells , 2007 .

[66]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[67]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[68]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[69]  E. Rank,et al.  High order finite elements for shells , 2005 .

[70]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[71]  M. Krafczyk,et al.  Fast kd‐tree‐based hierarchical radiosity for radiative heat transport problems , 2011 .