Geometric modeling, isogeometric analysis and the finite cell method
暂无分享,去创建一个
Ernst Rank | Alexander Düster | Dominik Schillinger | Stefan Kollmannsberger | Martin Ruess | M. Ruess | D. Schillinger | E. Rank | S. Kollmannsberger | A. Düster
[1] D. T. Pham,et al. PARAMETRIC AND FEATURE-BASED CAD/CAM CONCEPTS, TECHNIQUES, APPLICATIONS by J.J. Shah and M. Mäntylä, Wiley, Chichester, 1995, 619 pp., ISBN 0–471–00214–3 (£55; HBK) , 1998, Robotica.
[2] O. Zienkiewicz,et al. A note on mass lumping and related processes in the finite element method , 1976 .
[3] T. Belytschko,et al. Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .
[4] Stéphane Bordas,et al. Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .
[5] Max K. Agoston. Computer Graphics And Geometric Modelling: Implementation & Algorithms , 2005 .
[6] K. S. Lo,et al. Computer analysis in cylindrical shells , 1964 .
[7] T. Hughes,et al. Special issue on computational geometry and analysis , 2010 .
[8] Ernst Rank,et al. p-FEM applied to finite isotropic hyperelastic bodies , 2003 .
[9] R. Glowinski,et al. Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .
[10] Barna A. Szabó,et al. Quasi-regional mapping for the p-version of the finite element method , 1997 .
[11] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[12] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[13] J. Koenderink. Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[14] Ernst Rank,et al. The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .
[15] G. Sangalli,et al. IsoGeometric analysis using T-splines on two-patch geometries , 2011 .
[16] Z. Pammer,et al. The p–version of the finite–element method , 2014 .
[17] Victor M. Calo,et al. The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .
[18] Ernst Rank,et al. The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.
[19] J. Z. Zhu,et al. The finite element method , 1977 .
[20] Ghang Lee,et al. Parametric 3D modeling in building construction with examples from precast concrete , 2004 .
[21] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[22] M. A. Hyman,et al. Non-iterative numerical solution of boundary-value problems , 1952 .
[23] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[24] Markus H. Gross,et al. CSG tree rendering for point-sampled objects , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..
[25] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[26] Ivo Babuška,et al. The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .
[27] Ivo Babuska,et al. V&V in Computational Engineering and Science. Part 1: Basic Concepts , 2003 .
[28] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[29] E. Rank,et al. Topology optimization using the finite cell method , 2012 .
[30] Michael J. Miller,et al. Introduction to Computer Graphics , 1984, Developing Graphics Frameworks with Python and OpenGL.
[31] Alexander Düster,et al. Non-standard bone simulation: interactive numerical analysis by computational steering , 2011, Comput. Vis. Sci..
[32] Hyun-Jung Kim,et al. Isogeometric analysis for trimmed CAD surfaces , 2009 .
[33] Ernst Rank,et al. Finite cell method , 2007 .
[34] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[35] Ernst Rank,et al. Topology optimization based on the finite cell method , 2010 .
[36] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[37] Ernst Rank,et al. An efficient integration technique for the voxel‐based finite cell method , 2012 .
[38] S. H. Lui,et al. Spectral domain embedding for elliptic PDEs in complex domains , 2009 .
[39] Ernst Rank,et al. Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .
[40] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[41] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[42] Ernst Rank,et al. The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .
[43] Ernst Rank,et al. The finite cell method for three-dimensional problems of solid mechanics , 2008 .
[44] Olivier Pironneau,et al. A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .
[45] Ernst Rank,et al. The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..
[46] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[47] Gianluca Iaccarino,et al. IMMERSED BOUNDARY METHODS , 2005 .
[48] Rainald Löhner,et al. Adaptive Embedded/Immersed Unstructured Grid Techniques , 2007 .
[49] I. Akkerman,et al. Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..
[50] Yuri Bazilevs,et al. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .
[51] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[52] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[53] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[54] Spencer J. Sherwin,et al. A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .
[55] Jami J. Shah,et al. Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications , 1995 .
[56] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[57] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[58] Y. Bazilevs,et al. The B-Spline version of the Finite Cell Method for linear and nonlinear analysis of complex geometry , 2011 .
[59] I. Babuska,et al. Finite Element Analysis , 2021 .
[60] D. Schillinger,et al. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .
[61] Vadim Shapiro,et al. Meshfree modeling and analysis of physical fields in heterogeneous media , 2005, Adv. Comput. Math..
[62] Max K. Agoston,et al. Computer graphics and geometric modeling , 2013 .
[63] P. Angot,et al. A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .
[64] Thomas-Peter Fries,et al. Higher‐order XFEM for curved strong and weak discontinuities , 2009 .
[65] Ernst Rank,et al. pq-Adaptive solid finite elements for three-dimensional plates and shells , 2007 .
[66] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[67] Y. Bazilevs,et al. Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .
[68] Ralf-Peter Mundani,et al. The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .
[69] E. Rank,et al. High order finite elements for shells , 2005 .
[70] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[71] M. Krafczyk,et al. Fast kd‐tree‐based hierarchical radiosity for radiative heat transport problems , 2011 .