Deceleration of molecules by dipole force potential: a numerical simulation

We propose a new method for making ultracold molecules below 300 μK by cooling via the dipole force of an intense infrared (IR) standing wave created in a high finesse cavity. Deceleration can be achieved by periodically switching an IR standing wave slightly red-detuned from the resonance frequency of a molecular vibration–rotation transition. The potential depth becomes as high as 50 mK with an incident laser power of 3 W. By properly switching the potential, one can remove the translational energy of molecules from a couple of hundred mK to 300 μK or below. Since all molecules except homonuclear diatomic molecules have one or more optical transitions in the IR range that can be used for a source of the dipole force, the present method is applicable to almost all molecules of chemical interest. Moreover, by choosing an appropriate rotation–vibration transition, one can decelerate and trap molecules in the completely ground state in any degrees of freedom. Numerical simulations showed sufficiently wide phase-space areas of decelerated molecules through use of this technique for practical applications. The effect of various parameters on the efficiency of the cavity decelerator has been examined by numerical simulations.

[1]  B. Neyenhuis,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[2]  M. Weidemüller,et al.  Formation of ultracold polar molecules in the rovibrational ground state. , 2008, Physical review letters.

[3]  A. Libson,et al.  Stopping supersonic oxygen with a series of pulsed electromagnetic coils: A molecular coilgun , 2008 .

[4]  A. Libson,et al.  Stopping supersonic beams with a series of pulsed electromagnetic coils: an atomic coilgun. , 2008, Physical review letters.

[5]  J. Doyle,et al.  Magnetic Trapping of Atomic Nitrogen (\(^{14}\)N) and Cotrapping of NH (\(X\)\(^{3}\)\(\Sigma\) -) , 2008, 0802.1662.

[6]  H. Kanamori,et al.  Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter , 2007 .

[7]  A. Bishop,et al.  Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices , 2006 .

[8]  A. Bishop,et al.  Controlling the motion of cold molecules with deep periodic optical potentials , 2006 .

[9]  G. Meijer,et al.  Molecular beams with a tunable velocity. , 2006, Physical chemistry chemical physics : PCCP.

[10]  Paul D. Lett,et al.  Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering , 2006 .

[11]  P. Lett,et al.  Photoassociation Spectroscopy of Ultracold Atoms and the Study of ``Physicist's Molecules'' , 2006 .

[12]  G. Meijer,et al.  Stark deceleration and trapping of OH radicals. , 2006, Annual review of physical chemistry.

[13]  G. Meijer,et al.  "Higher-order resonances in a Stark decelerator" (vol 71, pg 053409, 2005) , 2006 .

[14]  G. Meijer,et al.  Transverse stability in a Stark decelerator , 2006 .

[15]  K. Góral,et al.  Production of cold molecules via magnetically tunable Feshbach resonances , 2006, cond-mat/0601420.

[16]  T. Momose,et al.  Microwave Stark decelerator for polar molecules , 2005 .

[17]  G. Rempe,et al.  Water vapor at a translational temperature of 1 K , 2005, physics/0512119.

[18]  R. Decarvalho,et al.  High-flux beam source for cold, slow atoms or molecules. , 2005, Physical review letters.

[19]  G. Meijer,et al.  Higher-order resonances in a Stark decelerator , 2005 .

[20]  B. Friedrich A quasi-analytic model of a linear Stark accelerator/decelerator for polar molecules , 2004 .

[21]  R. Krems,et al.  Editorial: Quo vadis, cold molecules? , 2004, physics/0505201.

[22]  S. Jochim,et al.  Bose-Einstein Condensation of Molecules , 2003, Science.

[23]  James J. Valentini,et al.  Subkelvin Cooling NO Molecules via "Billiard-like" Collisions with Argon , 2003, Science.

[24]  Markus Greiner,et al.  Emergence of a molecular Bose–Einstein condensate from a Fermi gas , 2003, Nature.

[25]  W. Ketterle,et al.  Observation of bose-einstein condensation of molecules , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[26]  W. Ketterle,et al.  Spectroscopic insensitivity to cold collisions in a two-state mixture of fermions. , 2003, Physical review letters.

[27]  G. Meijer,et al.  Production and application of translationally cold molecules , 2003 .

[28]  T. Momose,et al.  Intense pulsed helium droplet beams , 2002, physics/0206041.

[29]  R. Jongma,et al.  Deceleration and trapping of ammonia using time-varying electric fields , 2002 .

[30]  E. Hinds,et al.  Measurement of the electron electric dipole moment using YbF molecules. , 2002, Physical review letters.

[31]  N. Balakrishnan,et al.  Chemistry at Ultracold Temperatures , 2001 .

[32]  D. Herschbach,et al.  Slowing and Speeding Molecular Beams by Means of a Rapidly Rotating Source , 2001 .

[33]  R. H. Wynar,et al.  Superchemistry: dynamics of coupled atomic and molecular bose-einstein condensates , 2000, Physical review letters.

[34]  Chu,et al.  Laser cooling of atoms, ions, or molecules by coherent scattering , 2000, Physical review letters.

[35]  R. Grimm,et al.  Optical dipole traps for neutral atoms , 1999, physics/9902072.

[36]  M. Kozlov,et al.  Parity violation effects in diatomics , 1995 .

[37]  William M. Steen,et al.  Atom-Photon Interactions Basic Processes and Applications , 1992 .

[38]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[39]  K. Fox Isotopic dependence of infrared transition moments in methane , 1984 .

[40]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[41]  F. Merkt,et al.  FAST TRACK COMMUNICATION: Slow beams of atomic hydrogen by multistage Zeeman deceleration , 2008 .

[42]  K. Winkler,et al.  A Viewpoint on : Ultracold Triplet Molecules in the Rovibrational Ground State , 2008 .

[43]  C. C. Tannoudji,et al.  Atom-photon interactions , 1992 .

[44]  K. N. Rao,et al.  Molecular Spectroscopy: Modern Research , 1972 .