Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells

[1]  Jacek Ulanski,et al.  Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core , 2019, Joule.

[2]  Liang Yao,et al.  Fully Conjugated Donor-Acceptor Block Copolymers for Organic Photovoltaics via Heck-Mizoroki Coupling. , 2019, ACS macro letters.

[3]  M. Brinkmann,et al.  Block Junction-Functionalized All-Conjugated Donor-Acceptor Block Copolymers. , 2018, ACS applied materials & interfaces.

[4]  J. Roncali,et al.  The Dawn of Single Material Organic Solar Cells , 2018, Advanced science.

[5]  Jason M. Munro,et al.  Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge Generation in Donor–Acceptor Materials , 2018, Advanced Functional Materials.

[6]  Yong Cao,et al.  Organic and solution-processed tandem solar cells with 17.3% efficiency , 2018, Science.

[7]  M. Thelakkat,et al.  Modular Synthesis and Structure Analysis of P3HT-b-PPBI Donor–Acceptor Diblock Copolymers , 2018, Macromolecules.

[8]  Anhua Liu,et al.  A Chlorinated π-Conjugated Polymer Donor for Efficient Organic Solar Cells , 2018, Joule.

[9]  M. Toney,et al.  Mixed Domains Enhance Charge Generation and Extraction in Bulk‐Heterojunction Solar Cells with Small‐Molecule Donors , 2018 .

[10]  Jianqi Zhang,et al.  Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains. , 2018, Macromolecular rapid communications.

[11]  Fan Yang,et al.  An Isoindigo‐Based “Double‐Cable” Conjugated Polymer for Single‐ Component Polymer Solar Cells , 2018 .

[12]  F. Liu,et al.  Optimized Fibril Network Morphology by Precise Side‐Chain Engineering to Achieve High‐Performance Bulk‐Heterojunction Organic Solar Cells , 2018, Advanced materials.

[13]  Chang Geun Park,et al.  High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks. , 2018, ACS applied materials & interfaces.

[14]  H. Ade,et al.  A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. , 2018, Journal of the American Chemical Society.

[15]  Jie Zhu,et al.  Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor , 2018, Advanced materials.

[16]  Fan Yang,et al.  A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units , 2018, Science China Chemistry.

[17]  Stephen R. Forrest,et al.  High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency , 2018 .

[18]  E. Levillain,et al.  Triphenylamine-Based Push–Pull σ–C60 Dyad As Photoactive Molecular Material for Single-Component Organic Solar Cells: Synthesis, Characterizations, and Photophysical Properties , 2018 .

[19]  D. Jones,et al.  Advances toward the effective use of block copolymers as organic photovoltaic active layers , 2018 .

[20]  Fan Yang,et al.  "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. , 2017, Journal of the American Chemical Society.

[21]  Liming Ding,et al.  Ternary organic solar cells offer 14% power conversion efficiency. , 2017, Science bulletin.

[22]  Thanh Luan Nguyen,et al.  Single Component Organic Solar Cells Based on Oligothiophene‐Fullerene Conjugate , 2017 .

[23]  Fan Yang,et al.  Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells , 2017 .

[24]  T. Kowalewski,et al.  Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers , 2017 .

[25]  Yanming Sun,et al.  Recent Advances in Wide‐Bandgap Photovoltaic Polymers , 2017, Advanced materials.

[26]  H. Yao,et al.  Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells , 2017 .

[27]  Dae Hee Lee,et al.  (D)n–σ–(A)m type partially conjugated block copolymer and its performance in single-component polymer solar cells , 2017 .

[28]  Christoph J. Brabec,et al.  Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing , 2017, Nature Communications.

[29]  Zhaohui Wang,et al.  Hybrid Corannulene-Perylene Dyes: Facile Synthesis and Optoelectronic Properties. , 2016, Chemistry, an Asian journal.

[30]  S. Chand,et al.  An Organic Dyad Composed of Diathiafulvalene-Functionalized Diketopyrrolopyrrole-Fullerene for Single-Component High-Efficiency Organic Solar Cells. , 2016, Angewandte Chemie.

[31]  W. Hu,et al.  Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells , 2016 .

[32]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[33]  Feng Gao,et al.  Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability , 2016, Advanced materials.

[34]  Pei Cheng,et al.  Stability of organic solar cells: challenges and strategies. , 2016, Chemical Society reviews.

[35]  C. McNeill,et al.  Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells , 2015 .

[36]  Youngmin Lee,et al.  Challenges and Opportunities in the Development of Conjugated Block Copolymers for Photovoltaics , 2015 .

[37]  M. Thelakkat,et al.  Donor–acceptor block copolymers carrying pendant PC71BM fullerenes with an ordered nanoscale morphology , 2015 .

[38]  Tobin J Marks,et al.  Imide- and amide-functionalized polymer semiconductors. , 2014, Chemical reviews.

[39]  D. Smilgies,et al.  Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae , 2014, Macromolecules.

[40]  K. Yager,et al.  Lamellar and liquid crystal ordering in solvent-annealed all-conjugated block copolymers. , 2014, Soft matter.

[41]  Yan Wang,et al.  Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors , 2014 .

[42]  Liming Ding,et al.  A dumbbell-like A-D-A molecule for single-component organic solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[44]  C. Hawker,et al.  : No Assembly Required : Recent Advances in Fully Conjugated Block Copolymers , 2013 .

[45]  Tomoya Higashihara,et al.  Synthesis of All-Conjugated Donor-Acceptor-Donor ABA-Type Triblock Copolymers via Kumada Catalyst-Transfer Polycondensation. , 2013, ACS macro letters.

[46]  Y. Geng,et al.  Donor-acceptor conjugated cooligomers for single molecule solar cells , 2013, Chinese Journal of Polymer Science.

[47]  A. Hexemer,et al.  Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation. , 2013, Nano letters.

[48]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[49]  Jianhui Hou,et al.  Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State , 2012 .

[50]  K. Hashimoto,et al.  Morphological stability of organic solar cells based upon an oligo(p-phenylenevinylene)-C70 dyad. , 2012, Physical chemistry chemical physics : PCCP.

[51]  F. Wudl,et al.  Top-down meets bottom-up: organized donor–acceptor heterojunctions for organic solar cells , 2012 .

[52]  E. Kramer,et al.  A modular strategy for fully conjugated donor-acceptor block copolymers. , 2012, Journal of the American Chemical Society.

[53]  K. Hashimoto,et al.  Controlled Synthesis of Fullerene-Attached Poly(3-alkylthiophene)-Based Copolymers for Rational Morphological Design in Polymer Photovoltaic Devices , 2012 .

[54]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[55]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[56]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[57]  J. Roncali Single Material Solar Cells: the Next Frontier for Organic Photovoltaics? , 2011 .

[58]  Michael Sommer,et al.  Donor–acceptor block copolymers for photovoltaic applications , 2010 .

[59]  K. Hashimoto,et al.  Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells. , 2010, Chemical communications.

[60]  N. Berton,et al.  Poly(bisthiophene-carbazole-fullerene) double-cable polymer as new donor-acceptor material: preparation and electrochemical and spectroscopic characterization. , 2009, The journal of physical chemistry. B.

[61]  Fosong Wang,et al.  Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. , 2009, Journal of the American Chemical Society.

[62]  M. Thelakkat,et al.  Crystalline-crystalline donor-acceptor block copolymers. , 2008, Angewandte Chemie.

[63]  René M. Williams,et al.  Triplet formation involving a polar transition state in a well-defined intramolecular perylenediimide dimeric aggregate. , 2008, The journal of physical chemistry. A.

[64]  Milan Vanecek,et al.  Fourier transform photocurrent spectroscopy applied to a broad variety of electronically active thin films (silicon, carbon, organics) , 2007 .

[65]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[66]  Yongfang Li,et al.  Synthesis and Photovoltaic Properties of a Donor-Acceptor Double-Cable Polythiophene with High Content of C60 Pendant , 2007 .

[67]  M. Catellani,et al.  Synthesis of soluble donor-acceptor double-cable polymers based on polythiophene and tetracyanoanthraquinodimethane (TCAQ). , 2003, Organic letters.

[68]  N. S. Sariciftci,et al.  Double-cable polymers for fullerene based organic optoelectronic applications , 2002 .

[69]  M. Maggini,et al.  Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes , 2001 .

[70]  J. Hummelen,et al.  Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. , 2001, Journal of the American Chemical Society.

[71]  M. Maggini,et al.  A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers , 2000 .

[72]  G. Hadziioannou,et al.  Synthesis of a C60-oligophenylenevinylene hybrid and its incorporation in a photovoltaic device , 1999 .

[73]  P. Sozzani,et al.  The First “Charm Bracelet” Conjugated Polymer: An Electroconducting Polythiophene with Covalently Bound Fullerene Moieties , 1996 .

[74]  L. K. Patterson,et al.  Oxygen quenching of singlet and triplet states , 1970 .