Dynamic Color Mapping with a Multi-Scale Histogram: A Design Study with Physical Scientists

Many research and development activities for scientific data analysis have focused on scalability challenges and data-driven features. Conversely, data visualization that focuses on models requiring human interaction rarely involve practical and largescale scientific data analysis. Therefore, a gap exists between interactive data visualization and scientific data analysis applications. In this paper, we present a design study of interactive data visualization to support scientists who visually analyze data from neutron scattering experiments. This study was conducted in multiple phases: 1) problem characterization; 2) initial design and formative evaluation; and 3) iterative design. We characterize the problems and the design requirements for the analysis of the specific physical science data. We discuss the design, development, evaluation of our visual analytics tool and as well as our iterative developments with physical scientists. We show how to bridge the gap between the two disciplines uncovering new potential to solve their challenges in this design study. We focus on a specific challenge, finding an optimal color mapping, which plays a critical role in neutron scattering science and is broadly applicable to other scientific domains. To address the challenge, we propose two interactive visualization techniques: a dynamic color scale bar (DCSB) and a multi-scale histogram (MSH).

[1]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[2]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[3]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[4]  Mark D. Apperley,et al.  A review and taxonomy of distortion-oriented presentation techniques , 1994, TCHI.

[5]  Cynthia A. Brewer,et al.  Color Use Guidelines for Mapping and Visualization , 1994 .

[6]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[7]  Steven F. Roth,et al.  SDM: selective dynamic manipulation of visualizations , 1995, UIST '95.

[8]  Bernice E. Rogowitz,et al.  How not to lie with visualization , 1996 .

[9]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[10]  Penny Rheingans Task-based color scale design , 2000, Applied Imaging Pattern Recognition.

[11]  M. Sheelagh T. Carpendale,et al.  A framework for unifying presentation space , 2001, UIST '01.

[12]  Kasper Hornbæk,et al.  Reading of electronic documents: the usability of linear, fisheye, and overview+detail interfaces , 2001, CHI.

[13]  Pat Hanrahan,et al.  Multiscale Visualization Using Data Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[14]  M. Lumsden,et al.  UB matrix implementation for inelastic neutron scattering experiments , 2005 .

[15]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[16]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[17]  Alexandru Telea,et al.  Multiscale Visualization of Dynamic Software Logs , 2007, EuroVis.

[18]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[19]  Han-Wei Shen,et al.  Multiscale Time Activity Data Exploration via Temporal Clustering Visualization Spreadsheet , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[21]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Niklas Elmqvist,et al.  Stack zooming for multi-focus interaction in time-series data visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[23]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[24]  Jean-Daniel Fekete,et al.  Mélange: Space Folding for Visual Exploration , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[26]  A. Savici,et al.  Neutron scattering study of spin dynamics in superconducting (Tl,Rb)2Fe4Se5 , 2013, 1301.2413.

[27]  Christopher Andrews,et al.  The human is the loop: new directions for visual analytics , 2014, Journal of Intelligent Information Systems.

[28]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[29]  Daniel A. Keim,et al.  ColorCAT: Guided Design of Colormaps for Combined Analysis Tasks , 2015, EuroVis.

[30]  P. F. Peterson,et al.  Event-Based Processing of Neutron Scattering Data , 2015 .

[31]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[32]  James P. Ahrens,et al.  Interactive Colormapping: Enabling Multiple Data Range and Detailed Views of Ocean Salinity , 2016, CHI Extended Abstracts.

[33]  C. Steed,et al.  Improving Scientific Data Analysis Through Multi-touch Enabled Interactive Data Visualization with Applications to Neutron Science , 2017 .

[34]  Xiaotong Liu,et al.  Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots , 2017, IEEE Transactions on Visualization and Computer Graphics.

[35]  David H. Laidlaw,et al.  Colorgorical: Creating discriminable and preferable color palettes for information visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[36]  Roxana Bujack,et al.  Intuitive Colormaps for Environmental Visualization , 2017, EnvirVis@EuroVis.

[37]  G. Elisabeta Marai,et al.  Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[38]  Alex Endert,et al.  Evaluating Interactive Graphical Encodings for Data Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[39]  James P. Ahrens,et al.  The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps , 2018, IEEE Transactions on Visualization and Computer Graphics.

[40]  David H. Rogers,et al.  ColorMoves: Real-time Interactive Colormap Construction for Scientific Visualization , 2018, IEEE Computer Graphics and Applications.

[41]  Markus Hadwiger,et al.  Abstractocyte: A Visual Tool for Exploring Nanoscale Astroglial Cells , 2018, IEEE Transactions on Visualization and Computer Graphics.