Partitioned vibration analysis of internal fluid‐structure interaction problems

SUMMARY A partitioned, continuum-based, internal fluid–structure interaction (FSI) formulation is developed for modeling combined sloshing, acoustic waves, and the presence of an initial pressurized state. The present formulation and its computer implementation use the method of localized Lagrange multipliers to treat both matching and non-matching interfaces. It is shown that, with the context of continuum Lagrangian kinematics, the fluid sloshing and acoustic stiffness terms originate from an initial pressure term akin to that responsible for geometric stiffness effects in solid mechanics. The present formulation is applicable to both linearized vibration analysis and nonlinear FSI transient analysis provided that a convected kinematics is adopted for updating the mesh geometry in a finite element discretization. Numerical examples illustrate the capability of the present procedure for solving coupled vibration and nonlinear sloshing problems. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  C. Felippa,et al.  MIXED VARIATIONAL FORMULATION OF FINITE ELEMENT ANALYSIS OF ACOUSTOELASTIC/SLOSH FLUID-STRUCTURE INTERACTION , 1990 .

[2]  Roger Ohayon,et al.  Reduced models for modal analysis of fluid-structure systems taking into account compressibility and gravity effects , 2006 .

[3]  Carlos A. Felippa,et al.  Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods , 2009 .

[4]  Worsak Kanok-Nukulchai,et al.  Structure–fluid interaction model of tuned liquid dampers , 1999 .

[5]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[6]  J. A. González,et al.  Partitioned formulation of frictional contact problems using localized Lagrange multipliers , 2005 .

[7]  H. Norman Abramson,et al.  The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106 , 1966 .

[8]  Carlos A. Felippa,et al.  Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: Formulation , 2008 .

[9]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[10]  F. Parrinello,et al.  Lagrangian finite element modelling of dam-fluid interaction: Accurate absorbing boundary conditions , 2007 .

[11]  J. A. González,et al.  Partitioned formulation of internal and gravity waves interacting with flexible structures , 2010 .

[12]  Lawrence N. Virgin,et al.  An implicit boundary element solution with consistent linearization for free surface flows and non‐linear fluid–structure interaction of floating bodies , 2001 .

[13]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[14]  Alain Cariou,et al.  Liquid sloshing in ship tanks: a comparative study of numerical simulation , 1999 .

[15]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[16]  M. Kawahara,et al.  TWO-DIMENSIONAL SLOSHING ANALYSIS BY LAGRANGIAN FINITE ELEMENT METHOD , 1990 .

[17]  Carlos A. Felippa,et al.  A formulation based on localized Lagrange multipliers for BEM–FEM coupling in contact problems , 2008 .

[18]  Carlos A. Felippa,et al.  Partitioned formulation of internal fluid–structure interaction problems by localized Lagrange multipliers , 2001 .

[19]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[20]  Ekkehard Ramm,et al.  A strong coupling partitioned approach for fluid–structure interaction with free surfaces , 2007 .

[21]  W. G. Price,et al.  Numerical simulation of liquid sloshing phenomena in partially filled containers , 2009 .

[22]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[23]  Medhat A. Haroun,et al.  Axisymmetrical vibrations of tanks-numerical , 1985 .

[24]  Roger Ohayon,et al.  Compressibility and gravity effects in internal fluid–structure vibrations: Basic equations and appropriate variational formulations , 2006 .

[25]  Chung Bang Yun,et al.  Infinite elements for 3-dimensional wave — Structure interaction problems , 1992 .

[26]  Alfredo Bermúdez,et al.  Finite element computation of the vibrations of a plate-fluid system with interface damping , 2001 .

[27]  C. Felippa,et al.  A localized version of the method of Lagrange multipliers and its applications , 2000 .

[28]  K. Bathe,et al.  The inf-sup test , 1993 .

[29]  Carlos A. Felippa,et al.  A contact formulation based on localized Lagrange multipliers: formulation and application to two‐dimensional problems , 2002 .

[30]  Kyuichiro Washizu,et al.  The boundary element method applied to the analysis of two‐dimensional nonlinear sloshing problems , 1981 .

[31]  Ranjan Ganguli,et al.  Three‐dimensional sloshing: A consistent finite element approach , 2011 .

[32]  Alfredo Bermúdez,et al.  FINITE ELEMENT COMPUTATION OF THREE-DIMENSIONAL ELASTOACOUSTIC VIBRATIONS , 1999 .

[33]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[34]  M. A. Crisfield,et al.  Re‐visiting the contact patch test , 2000 .

[35]  J. Mead The shallow water equations in Lagrangian coordinates , 2004 .

[36]  M. A. Noorian,et al.  A 3D BEM model for liquid sloshing in baffled tanks , 2008 .

[37]  Mutsuto Kawahara,et al.  Lagrangian finite element method for the analysis of two‐dimensional sloshing problems , 1986 .

[38]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[39]  S. S. Hough,et al.  The Oscillations of a Rotating Ellipsoidal Shell Containing Fluid. [Abstract] , 1894 .

[40]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .

[41]  Carlos A. Felippa,et al.  A survey of parametrized variational principles and applications to computational mechanics , 1994 .

[42]  M. Ortiz,et al.  Lagrangian finite element analysis of Newtonian fluid flows , 1998 .

[43]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[44]  Kazuhisa Abe,et al.  R-ADAPTIVE BOUNDARY ELEMENT METHOD FOR UNSTEADY FREE-SURFACE FLOW ANALYSIS , 1996 .

[45]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[46]  Medhat A. Haroun,et al.  Axisymmetrical Vibrations, of Tanks—Analytical , 1985 .

[47]  Yousef Saad,et al.  An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows , 1998 .

[48]  Abdullah Gedikli,et al.  Evaluation of sloshing problem by variational boundary element method , 2003 .

[49]  S. Rebouillat,et al.  Fluid–structure interaction in partially filled liquid containers: A comparative review of numerical approaches , 2010 .

[50]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[51]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[52]  Akiji Shinkai,et al.  BOUNDARY ELEMENT ANALYSIS OF 3-DIMENSIONAL SLOSHING PROBLEMS BY USING CUBIC SPLINE ELEMENT , 1989 .

[53]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[54]  J. Frandsen Sloshing motions in excited tanks , 2004 .

[55]  Roland W. Lewis,et al.  Finite element modelling of surface tension effects using a Lagrangian-Eulerian kinematic description , 1997 .

[56]  C. Felippa,et al.  A Variational Framework for Solution Method Developments in Structural Mechanics , 1998 .