Light-induced atomic desorption in a compact system for ultracold atoms

In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters.

[1]  J. H. de Boer,et al.  The dynamical character of adsorption , 1968 .

[2]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[3]  G. Alzetta,et al.  Light-induced ejection of alkali atoms in polysiloxane coated cells , 1993 .

[4]  T. van Zoest,et al.  Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps , 2005, cond-mat/0509241.

[5]  C. Wieman,et al.  STUDY OF WALL COATINGS FOR VAPOR-CELL LASER TRAPS , 1994 .

[6]  T. Grünzweig,et al.  An atomic beam source for fast loading of a magneto-optical trap under high vacuum. , 2012, The Review of scientific instruments.

[7]  D. Weiss,et al.  All-optical Bose-Einstein condensation using a compressible crossed dipole trap , 2005 .

[8]  C. Sackett,et al.  Vacuum-pressure measurement using a magneto-optical trap , 2012, 1203.0189.

[9]  D. Stamper-Kurn,et al.  Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments , 2004, physics/0409011.

[10]  Cornell,et al.  Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  Trapping Fermionic 40K and Bosonic 87Rb on a Chip , 2005, cond-mat/0502196.

[12]  C. Adams,et al.  Fast switching of alkali atom dispensers using laser-induced heating , 2005 .

[13]  Chandra Raman,et al.  Light-induced atomic desorption for loading a sodium magneto-optical trap , 2009, 0911.0957.

[14]  L. Ricci,et al.  Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading. , 2014, The Journal of chemical physics.

[15]  W. Ketterle,et al.  Making, probing and understanding Bose-Einstein condensates , 1999, cond-mat/9904034.

[16]  Robinson,et al.  Very cold trapped atoms in a vapor cell. , 1990, Physical review letters.

[17]  A. Aspect,et al.  All-optical runaway evaporation to Bose-Einstein condensation , 2009, 0903.2745.

[18]  B. P. Anderson,et al.  Loading a vapor-cell magneto-optic trap using light-induced atom desorption , 2001 .

[19]  M D Barrett,et al.  All-optical formation of an atomic Bose-Einstein condensate. , 2001, Physical review letters.

[20]  V. Vuletić,et al.  Atom Chips: REICHEL:ATOM CHIPS O-BK , 2011 .

[21]  Vacuum Pressure Measurements using a Magneto-Optical Trap , 2012 .

[22]  Theodor W. Hänsch,et al.  FAST LOADING OF A MAGNETO-OPTICAL TRAP FROM A PULSED THERMAL SOURCE , 1998 .

[23]  G. Bruce,et al.  Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method. , 2014, The Review of scientific instruments.

[24]  J. Reichel,et al.  Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments. , 2014, The Review of scientific instruments.

[25]  Valerio Biancalana,et al.  Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption , 2003 .

[26]  Luis A. Orozco,et al.  High efficiency magneto-optical trap for unstable isotopes , 2003 .

[27]  S. Du,et al.  Atom-chip Bose-Einstein condensation in a portable vacuum cell (4 pages) , 2004 .

[28]  T. Madey,et al.  Theoretical modeling of photon- and electron-stimulated Na and K desorption from SiO2 , 2004 .

[29]  Gang Li,et al.  Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations , 2009 .

[30]  S. Bromley,et al.  Holographic power-law traps for the efficient production of Bose-Einstein condensates , 2011, 1109.1502.

[31]  Loading of a Rb magneto-optic trap from a getter source , 2001, physics/0204022.

[32]  C. Foot,et al.  Radiation force in the magneto-optical trap , 1992 .

[33]  J. Dalibard,et al.  Fast production of ultracold sodium gases using light{induced desorption and optical trapping , 2009, 0911.5656.

[34]  J. Dalibard,et al.  Production of sodium Bose–Einstein condensates in an optical dimple trap , 2011, 1104.1009.

[35]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[36]  Markus Wilde,et al.  Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments , 2006 .

[37]  Michael E. Gehm,et al.  Scaling laws for evaporative cooling in time-dependent optical traps , 2001 .

[38]  József Fortágh,et al.  Magnetic microtraps for ultracold atoms , 2007 .

[39]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.