Pi-surfaces: products of implicit surfaces towards constructive composition of 3D objects

Implicit functions provide a fundamental basis to model 3D objects, no matter they are rigid or deformable, in computer graphics and geometric modeling. This paper introduces a new constructive scheme of implicitly-defined 3D objects based on products of implicit functions. This scheme is in contrast with popular approaches like blobbies, meta balls and soft objects, which rely on the sum of specific implicit functions to fit a 3D object to a set of spheres.

[1]  Adriano N. Raposo,et al.  Triangulation of Molecular Surfaces Using an Isosurface Continuation Algorithm , 2009, 2009 International Conference on Computational Science and Its Applications.

[2]  Abel J. P. Gomes,et al.  Triangulating molecular surfaces over a LAN of GPU-enabled computers , 2015, Parallel Comput..

[3]  Václav Skala,et al.  Polygonization of implicit surfaces with sharp features by edge-spinning , 2005, The Visual Computer.

[4]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[5]  Sylvain Lazard,et al.  Intersecting quadrics: an efficient and exact implementation , 2004, SCG '04.

[6]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[7]  H. A. Kamel,et al.  Creation and boundary evaluation of CSG-models , 1989, Engineering with Computers.

[8]  Samir Akkouche,et al.  Complex Skeletal Implicit Surfaces with Levels of Detail , 2004, WSCG.

[9]  Abel J. P. Gomes,et al.  Graphics processing unit‐based triangulations of Blinn molecular surfaces , 2011, Concurr. Comput. Pract. Exp..

[10]  Abel J. P. Gomes,et al.  Efficient deformation algorithm for plasmid DNA simulations , 2013, BMC Bioinformatics.

[11]  Chandrajit L. Bajaj,et al.  Spline Approximations of Real Algebraic Surfaces , 1997, J. Symb. Comput..

[12]  John E. Hopcroft,et al.  Automatic surface generation in computer aided design , 2005, The Visual Computer.

[13]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[14]  Václav Skala,et al.  Polygonisation of disjoint implicit surfaces by the adaptive edge spinning algorithm of implicit objects , 2007, Int. J. Comput. Sci. Eng..

[15]  Abel J. P. Gomes,et al.  3D molecular assembling of B-DNA sequences using nucleotides as building blocks , 2012, Graph. Model..

[16]  Chandrajit L. Bajaj,et al.  Geometric Modeling with Algebraic Surfaces , 1988, IMA Conference on the Mathematics of Surfaces.

[17]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[18]  Yun-shi Zhou,et al.  On blending of several quadratic algebraic surfaces , 2000, Comput. Aided Geom. Des..

[19]  A.A.G. Requicha,et al.  Boolean operations in solid modeling: Boundary evaluation and merging algorithms , 1985, Proceedings of the IEEE.

[20]  Chen Fa Blending Pipe Surfaces with Piecewise Algebraic Surfaces , 2000 .

[21]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[22]  A. Bondi van der Waals Volumes and Radii , 1964 .

[23]  S. Batsanov,et al.  Van der Waals Radii of Elements , 2001 .

[24]  Sanjeev Bedi,et al.  Surface design using functional blending , 1992, Comput. Aided Des..

[25]  Hugues Hoppe,et al.  Poisson surface reconstruction and its applications , 2008, SPM '08.