Auxiliary Space Multigrid Method Based on Additive Schur Complement Approximation for Graph Laplacian

In this paper the idea of auxiliary space multigrid (ASMG) methods is introduced. The construction is based on a two-level block factorization of local (finite element stiffness) matrices associated with a partitioning of the domain into overlapping or non-overlapping subdomains. The two-level method utilizes a coarse-grid operator obtained from additive Schur complement approximation (ASCA). Its analysis is carried out in the framework of auxiliary space preconditioning and condition number estimates for both, the two-level preconditioner, as well as for the ASCA are derived. The two-level method is recursively extended to define the ASMG algorithm. In particular, so-called Krylov-cycles are considered. The theoretical results are supported by a representative collection of numerical tests which further demonstrate the efficiency of the new algorithm for multiscale problems.

[1]  Jinchao Xu,et al.  Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid , 2012, SIAM J. Numer. Anal..

[2]  Johannes Kraus,et al.  Additive Schur Complement Approximation and Application to Multilevel Preconditioning , 2012, SIAM J. Sci. Comput..

[3]  Y. Kuznetsov,et al.  Algebraic multigrid domain decomposition methods , 1989 .

[4]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[5]  S. Nepomnyaschikh Mesh theorems on traces, normalizations of function traces and their inversion , 1991 .

[6]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[7]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[8]  Thorsten Joachims,et al.  Transductive Learning via Spectral Graph Partitioning , 2003, ICML.

[9]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[10]  Gary L. Miller,et al.  Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing , 2011, Comput. Vis. Image Underst..

[11]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[12]  Svetozar Margenov,et al.  Robust multilevel methods for quadratic finite element anisotropic elliptic problems , 2014, Numer. Linear Algebra Appl..

[13]  Artem Napov,et al.  An Efficient Multigrid Method for Graph Laplacian Systems II: Robust Aggregation , 2017, SIAM J. Sci. Comput..

[14]  Ludmil T. Zikatanov,et al.  Algebraic Multilevel Preconditioners for the Graph Laplacian Based on Matching in Graphs , 2012, SIAM J. Numer. Anal..

[15]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[16]  Luke N. Olson,et al.  Coarsening invariance and bucket-sorted independent sets for algebraic multigrid , 2010 .

[17]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[18]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[19]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[20]  T. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Lecture Notes in Computational Science and Engineering) , 2008 .

[21]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[22]  George Karypis,et al.  Multilevel algorithms for generating coarse grids for multigrid methods , 2001, SC.

[23]  Stefano Serra Capizzano,et al.  Accelerated multigrid for graph Laplacian operators , 2015, Appl. Math. Comput..

[24]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[25]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[26]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[27]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[28]  Achi Brandt,et al.  Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..

[29]  James Brannick Aggregation-Based Aggressive Coarsening with Polynomial Smoothing , 2013 .

[30]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[31]  P. Gács,et al.  Algorithms , 1992 .

[32]  G. Miller,et al.  Combinatorial and algebraic tools for optimal multilevel algorithms , 2007 .

[33]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[34]  Johannes K. Kraus,et al.  An algebraic preconditioning method for M‐matrices: linear versus non‐linear multilevel iteration , 2002, Numer. Linear Algebra Appl..

[35]  Ludmil T. Zikatanov,et al.  Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..

[36]  Ludmil T. Zikatanov,et al.  Polynomial of Best Uniform Approximation to 1/x and Smoothing in Two-level Methods , 2010, Comput. Methods Appl. Math..

[37]  D. Spielman Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices , 2011 .

[38]  Ludmil T. Zikatanov,et al.  Weak Approximation Properties of Elliptic Projections with Functional Constraints , 2011, Multiscale Model. Simul..

[39]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[40]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[41]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[42]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[43]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[44]  Yong Shi,et al.  Laplacian twin support vector machine for semi-supervised classification , 2012, Neural Networks.

[45]  Owe Axelsson,et al.  Preconditioning of Boundary Value Problems Using Elementwise Schur Complements , 2009, SIAM J. Matrix Anal. Appl..

[46]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[47]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[48]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[49]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..