Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods

Vessel diseases are often accompanied by abnormalities related to vascular shape and size. Therefore, a clear visualization of vasculature is of high clinical significance. Ultrasound color flow imaging (CFI) is one of the prominent techniques for flow visualization. However, clutter signals originating from slow-moving tissue are one of the main obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature by suppressing the clutters is a significant and irreplaceable step for many applications of ultrasound CFI. Currently, this task is often performed by singular value decomposition (SVD) of the data matrix. This approach exhibits two well-known limitations. First, the performance of SVD is sensitive to the proper manual selection of the ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in the presence of large random noise in the dataset. A potential solution to these issues is using decomposition into low-rank and sparse matrices (DLSM) framework. SVD is one of the algorithms for solving the minimization problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD and use approximated SVD or SVD-free ideas which may have better performance with higher robustness and less computing time. In practice, these models separate blood from clutter based on the assumption that steady clutter represents a low-rank structure and that the moving blood component is sparse. In this paper, we present a comprehensive review of ultrasound clutter suppression techniques and exploit the feasibility of low-rank and sparse decomposition schemes in ultrasound clutter suppression. We conduct this review study by adapting 106 DLSM algorithms and validating them against simulation, phantom, and in vivo rat datasets. Two conventional quality metrics, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), are used for performance evaluation. In addition, computation times required by different algorithms for generating clutter suppressed images are reported. Our extensive analysis shows that the DLSM framework can be successfully applied to ultrasound clutter suppression.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Zhouchen Lin,et al.  A Block Lanczos with Warm Start Technique for Accelerating Nuclear Norm Minimization Algorithms , 2010, ArXiv.

[3]  Junbin Gao,et al.  Relations Among Some Low-Rank Subspace Recovery Models , 2014, Neural Computation.

[4]  Zhixun Su,et al.  Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation , 2011, NIPS.

[5]  Arvind Ganesh,et al.  Fast algorithms for recovering a corrupted low-rank matrix , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[6]  M. Fatemi,et al.  Adaptive background noise bias suppression in contrast-free ultrasound microvascular imaging , 2019, Physics in medicine and biology.

[7]  Stan Z. Li,et al.  Learning spatially localized, parts-based representation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  M. Tanter,et al.  Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging , 2015, Nature.

[9]  Soon Ki Jung,et al.  Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[10]  El-hadi Zahzah,et al.  Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing , 2016 .

[11]  W F Walker,et al.  Complex principal components for robust motion estimation , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Paul Grigas,et al.  An Extended Frank-Wolfe Method with "In-Face" Directions, and Its Application to Low-Rank Matrix Completion , 2015, SIAM J. Optim..

[13]  Kristoffer Lindskov Hansen,et al.  Spatiotemporal Filtering for Synthetic Aperture Slow Flow Imaging , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[14]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[15]  R. Cobbold,et al.  Single-ensemble-based eigen-processing methods for color flow imaging - Part I. The Hankel-SVD filter , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Misha Elena Kilmer,et al.  Novel Factorization Strategies for Higher Order Tensors: Implications for Compression and Recovery of Multi-linear Data , 2013, ArXiv.

[17]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[18]  Zhouchen Lin,et al.  A review on low-rank models in data analysis , 2016 .

[19]  Shuicheng Yan,et al.  Active Subspace: Toward Scalable Low-Rank Learning , 2012, Neural Computation.

[20]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[21]  Zhao Kang,et al.  Top-N Recommender System via Matrix Completion , 2016, AAAI.

[22]  Ammar A. Oglat,et al.  A Review of Medical Doppler Ultrasonography of Blood Flow in General and Especially in Common Carotid Artery , 2018, Journal of medical ultrasound.

[23]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[24]  Brendt Wohlberg,et al.  Fast principal component pursuit via alternating minimization , 2013, 2013 IEEE International Conference on Image Processing.

[25]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[26]  Xi Chen,et al.  Direct Robust Matrix Factorizatoin for Anomaly Detection , 2011, 2011 IEEE 11th International Conference on Data Mining.

[27]  Zhengzhong Bian,et al.  Adaptive clutter filtering based on sparse component analysis in ultrasound color flow imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[29]  K. Kristoffersen,et al.  Real-time adaptive clutter rejection filtering in color flow imaging using power method iterations , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[31]  Zhao Kang,et al.  Robust PCA Via Nonconvex Rank Approximation , 2015, 2015 IEEE International Conference on Data Mining.

[32]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[33]  Zhaofu Chen,et al.  Multidimensional Signal Processing for Sparse and Low-Rank Problems , 2014 .

[34]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[35]  M. Reiser,et al.  Diagnostic vascular ultrasonography with the help of color Doppler and contrast-enhanced ultrasonography , 2016, Ultrasonography.

[36]  Erik G. Larsson,et al.  The Higher-Order Singular Value Decomposition: Theory and an Application [Lecture Notes] , 2010, IEEE Signal Processing Magazine.

[37]  J. Greenleaf,et al.  Isomorphism between pulsed-wave Doppler ultrasound and direction-of-arrival estimation. II. Experimental results , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  R. Eckersley,et al.  Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. , 2005, Ultrasound in medicine & biology.

[39]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[40]  David M. Kovenock,et al.  The theoretical approach , 1973 .

[41]  Gongguo Tang,et al.  Robust principal component analysis based on low-rank and block-sparse matrix decomposition , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[42]  Lyn Jones,et al.  Imaging in vascular disease , 2009 .

[43]  George Trigeorgis,et al.  A Deep Semi-NMF Model for Learning Hidden Representations , 2014, ICML.

[44]  P. Rogers,et al.  Angiogenesis: a new theory for endometriosis. , 1998, Human reproduction update.

[45]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[46]  L. Thomas,et al.  An improved wall filter for flow imaging of low velocity flow , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[47]  T. Loupas,et al.  On the performance of regression and step-initialized IIR clutter filters for color Doppler systems in diagnostic medical ultrasound , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  JavedSajid,et al.  Decomposition into low-rank plus additive matrices for background/foreground separation , 2017 .

[49]  Xin Li,et al.  Simultaneous Video Stabilization and Moving Object Detection in Turbulence , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Shuicheng Yan,et al.  Practical low-rank matrix approximation under robust L1-norm , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Lei Zhang,et al.  Robust Principal Component Analysis with Complex Noise , 2014, ICML.

[52]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[53]  Wei Liu,et al.  Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Alfred C. H. Yu,et al.  Receiver-Operating Characteristic Analysis of Eigen-Based Clutter Filters for Ultrasound Color Flow Imaging , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[55]  Peripheral Arterial Disease in People With Diabetes , 2003 .

[56]  Robert J. Eckersley,et al.  In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Medical Imaging.

[57]  Narendra Ahuja,et al.  Robust Orthonormal Subspace Learning: Efficient Recovery of Corrupted Low-Rank Matrices , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[59]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[60]  Mickaël Tanter,et al.  Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler , 2016, NeuroImage.

[61]  D. McDonald,et al.  Significance of blood vessel leakiness in cancer. , 2002, Cancer research.

[62]  Jian Dong,et al.  Accelerated low-rank visual recovery by random projection , 2011, CVPR 2011.

[63]  James M. Rehg,et al.  GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity , 2013, 2013 IEEE International Conference on Computer Vision.

[64]  Yonina C. Eldar,et al.  Deep Unfolded Robust PCA with Application to Clutter Suppression in Ultrasound , 2018, bioRxiv.

[65]  Dacheng Tao,et al.  Greedy Bilateral Sketch, Completion & Smoothing , 2013, AISTATS.

[66]  Misha Elena Kilmer,et al.  Novel Methods for Multilinear Data Completion and De-noising Based on Tensor-SVD , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Michael Hintermüller,et al.  Robust Principal Component Pursuit via Inexact Alternating Minimization on Matrix Manifolds , 2015, Journal of Mathematical Imaging and Vision.

[68]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[69]  Mostafa Fatemi,et al.  Background Removal and Vessel Filtering of Noncontrast Ultrasound Images of Microvasculature , 2019, IEEE Transactions on Biomedical Engineering.

[70]  Hassan Rivaz,et al.  Global Ultrasound Elastography in Spatial and Temporal Domains , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[71]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[72]  Zhixun Su,et al.  Solving Principal Component Pursuit in Linear Time via $l_1$ Filtering , 2011, ArXiv.

[73]  Haesun Park,et al.  Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework , 2014, J. Glob. Optim..

[74]  H. Torp,et al.  Clutter filters adapted to tissue motion in ultrasound color flow imaging , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[75]  Emmanuel J. Candès,et al.  Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators , 2012, IEEE Transactions on Signal Processing.

[76]  R.S.C. Cobbold,et al.  A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. II. Comparative performance assessment , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[77]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[78]  Yin Li,et al.  Optimum Subspace Learning and Error Correction for Tensors , 2010, ECCV.

[79]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[80]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[81]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[82]  Gregg E Trahey,et al.  BSS-based filtering of physiological and ARFI-induced tissue and blood motion. , 2003, Ultrasound in medicine & biology.

[83]  D. Kruse,et al.  A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[84]  Yonina C. Eldar,et al.  Model-Aware Deep Learning Based Strategies for Clutter Suppression in Contrast Enhanced Ultrasound , 2018 .

[85]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[86]  F. Crea,et al.  Coronary microvascular dysfunction. , 2013, The New England journal of medicine.

[87]  Lasse Lovstakken,et al.  Eigen-based clutter filter design for ultrasound color flow imaging: a review , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  Yousef Saad,et al.  Scaled Gradients on Grassmann Manifolds for Matrix Completion , 2012, NIPS.

[89]  Fuxian Song,et al.  Performance evaluation of eigendecomposition-based adaptive clutter filter for color flow imaging. , 2006, Ultrasonics.

[90]  Deanna Needell,et al.  Compressed Sensing and Dictionary Learning , 2014 .

[91]  Søren Hauberg,et al.  Grassmann Averages for Scalable Robust PCA , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[92]  Hassan Rivaz,et al.  Low Rank and Sparse Decomposition of Ultrasound Color Flow Images for Suppressing Clutter in Real-Time , 2020, IEEE Transactions on Medical Imaging.

[93]  Klaus Tiemann,et al.  Vascular flow and perfusion imaging with ultrasound contrast agents. , 2004, Ultrasound in medicine & biology.

[94]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[95]  Alan D. Lopez,et al.  The Global Burden of Disease Study , 2003 .

[96]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[97]  Jacob Eisenstein,et al.  Discriminative Improvements to Distributional Sentence Similarity , 2013, EMNLP.

[98]  Michael F. Insana,et al.  Multidimensional Clutter Filter Optimization for Ultrasonic Perfusion Imaging , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[99]  Tamara G. Kolda,et al.  On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..

[100]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[101]  Nicolas Gillis,et al.  On the Geometric Interpretation of the Nonnegative Rank , 2010, 1009.0880.

[102]  R S Reneman,et al.  An efficient algorithm to remove low frequency Doppler signals in digital Doppler systems. , 1991, Ultrasonic imaging.

[103]  Weichuan Yu,et al.  Low-Rank Adaptive Clutter Filtering for Robust Ultrasound Vector Flow Imaging , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[104]  Jørgen Arendt Jensen,et al.  Ultrasonic colour Doppler imaging , 2011, Interface Focus.

[105]  Donald Goldfarb,et al.  Robust Low-Rank Tensor Recovery: Models and Algorithms , 2013, SIAM J. Matrix Anal. Appl..

[106]  Serhat S Bucak,et al.  Incremental Nonnegative Matrix Factorization for Background Modeling in Surveillance Video , 2007, 2007 IEEE 15th Signal Processing and Communications Applications.

[107]  John A. Hossack,et al.  The Singular Value Filter: A General Filter Design Strategy for PCA-Based Signal Separation in Medical Ultrasound Imaging , 2011, IEEE Transactions on Medical Imaging.

[108]  Philip Greenland,et al.  Peripheral artery disease, diabetes, and reduced lower extremity functioning. , 2002, Diabetes care.

[109]  Geoffrey E. Hinton,et al.  Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition-' Washington , D . C . , June , 1983 OPTIMAL PERCEPTUAL INFERENCE , 2011 .

[110]  Aggelos K. Katsaggelos,et al.  Sparse Bayesian Methods for Low-Rank Matrix Estimation , 2011, IEEE Transactions on Signal Processing.

[111]  N. S. Aybat,et al.  Fast First-Order Methods for Stable Principal Component Pursuit , 2011, 1105.2126.

[112]  M. Averkiou,et al.  Techniques for perfusion imaging with microbubble contrast agents , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[113]  Yonina C. Eldar,et al.  Deep Convolutional Robust PCA with Application to Ultrasound Imaging , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[114]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[115]  R. Hoyt,et al.  Peripheral arterial disease in people with diabetes: response to consensus statement. , 2004, Diabetes care.

[116]  Armando Manduca,et al.  Ultrasound Small Vessel Imaging With Block-Wise Adaptive Local Clutter Filtering , 2017, IEEE Transactions on Medical Imaging.

[117]  Rakesh K. Jain,et al.  Pathology: Cancer cells compress intratumour vessels , 2004, Nature.

[118]  Craig K. Abbey,et al.  Expanding Acquisition and Clutter Filter Dimensions for Improved Perfusion Sensitivity , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[119]  H. Torp Clutter rejection filters in color flow imaging: a theoretical approach , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[120]  P J Brands,et al.  Reduction of the Clutter Component in Doppler Ultrasound Signals Based on Singular Value Decomposition: A Simulation Study , 1997, Ultrasonic imaging.

[121]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[122]  Ashutosh Kumar Singh,et al.  Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, The Lancet.

[123]  Kun Li,et al.  Foreground–Background Separation From Video Clips via Motion-Assisted Matrix Restoration , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[124]  Volkan Cevher,et al.  A variational approach to stable principal component pursuit , 2014, UAI.

[125]  Xiaoming Yuan,et al.  Sparse and low-rank matrix decomposition via alternating direction method , 2013 .

[126]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[127]  S. Fishman,et al.  ISSVA classification. , 2014, Seminars in pediatric surgery.

[128]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[129]  M. V. Van Benthem,et al.  Fast algorithm for the solution of large‐scale non‐negativity‐constrained least squares problems , 2004 .

[130]  Hongyu Zhao,et al.  Low-Rank Modeling and Its Applications in Image Analysis , 2014, ACM Comput. Surv..

[131]  John C. S. Lui,et al.  Online Robust Subspace Tracking from Partial Information , 2011, ArXiv.

[132]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[133]  Ke-Lin Du,et al.  Compressed Sensing and Dictionary Learning , 2019, Neural Networks and Statistical Learning.

[134]  A. Tsybakov,et al.  Robust matrix completion , 2014, Probability Theory and Related Fields.

[135]  John Wright,et al.  Scalable Robust Matrix Recovery: Frank-Wolfe Meets Proximal Methods , 2014, SIAM J. Sci. Comput..

[136]  J. Jensen,et al.  Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[137]  James Demmel,et al.  Communication-Avoiding QR Decomposition for GPUs , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[138]  K. Kristoffersen,et al.  Clutter filter design for ultrasound color flow imaging , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[139]  Siavash Ghavami,et al.  Non-Local Based Denoising Framework for In Vivo Contrast-Free Ultrasound Microvessel Imaging , 2019, Sensors.

[140]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[141]  Yin Zhang,et al.  Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions , 2013, SIAM J. Sci. Comput..

[142]  Mostafa Fatemi,et al.  Concurrent Clutter and Noise Suppression via Low Rank Plus Sparse Optimization for Non-Contrast Ultrasound Flow Doppler Processing in Microvasculature , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[143]  Mostafa Fatemi,et al.  Multi-rate higher order singular value decomposition for enhanced non-contrast ultrasound Doppler imaging of slow flow , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[144]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .

[145]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[146]  Dit-Yan Yeung,et al.  Bayesian Robust Matrix Factorization for Image and Video Processing , 2013, 2013 IEEE International Conference on Computer Vision.

[147]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[148]  Sajid Javed,et al.  Robust PCA and Robust Subspace Tracking: A Comparative Evaluation , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[149]  Kasso A. Okoudjou,et al.  Finite Frame Theory: A Complete Introduction to Overcompleteness , 2016 .

[150]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[151]  R. Cobbold,et al.  Single-ensemble-based eigen-processing methods for color flow imaging - Part II. The matrix pencil estimator , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[152]  Yonina C. Eldar,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[153]  John Shawe-Taylor,et al.  MahNMF: Manhattan Non-negative Matrix Factorization , 2012, ArXiv.

[154]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[155]  Charlie Demené,et al.  Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity , 2015, IEEE Transactions on Medical Imaging.

[156]  Hui Zhang,et al.  Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis , 2011, ArXiv.

[157]  Daniel Rueckert,et al.  Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling , 2013, NeuroImage.

[158]  Viksit Kumar,et al.  Non-contrast agent based small vessel imaging of human thyroid using motion corrected power Doppler imaging , 2018, Scientific Reports.

[159]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[160]  Yongmin Kim,et al.  Adaptive clutter filtering for ultrasound color flow imaging. , 2003, Ultrasound in medicine & biology.

[161]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[162]  Sajid Javed,et al.  On the Applications of Robust PCA in Image and Video Processing , 2018, Proceedings of the IEEE.

[163]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[164]  Charlie Demené,et al.  Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors , 2018, IEEE Transactions on Medical Imaging.

[165]  Jieping Ye,et al.  Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion , 2014, SIAM J. Sci. Comput..

[166]  Christopher M Kramer,et al.  Coronary microvascular dysfunction, microvascular angina, and treatment strategies. , 2015, JACC. Cardiovascular imaging.

[167]  J. Gardin,et al.  Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. , 2006, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[168]  Andrews Sobral,et al.  Robust Low-Rank and Sparse Decomposition for Moving Object Detection: from Matrices to Tensors. (Détection d'objets mobiles dans des vidéos par décomposition en rang faible et parcimonieuse: de matrices à tenseurs) , 2017 .

[169]  Shiqian Ma,et al.  Efficient algorithms for robust and stable principal component pursuit problems , 2013, Comput. Optim. Appl..

[170]  El-hadi Zahzah,et al.  LRSLibrary: Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos , 2016 .

[171]  C. Dunsby,et al.  3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[172]  M.E. Allam,et al.  Isomorphism between pulsed-wave Doppler ultrasound and direction-of-arrival estimation. I. Basic principles , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[173]  Mayank Goyal,et al.  Comparing Vessel Imaging: Noncontrast Computed Tomography/Computed Tomographic Angiography Should Be the New Minimum Standard in Acute Disabling Stroke , 2016, Stroke.

[174]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[175]  M.F. Insana,et al.  Adaptive clutter rejection filtering in ultrasonic strain-flow imaging , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[176]  Martin Kleinsteuber,et al.  Robust PCA and subspace tracking from incomplete observations using $$\ell _0$$ℓ0-surrogates , 2012, Comput. Stat..

[177]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[178]  C. Chin,et al.  Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[179]  G. Montaldo,et al.  Real-time imaging of brain activity in freely moving rats using functional ultrasound , 2015, Nature Methods.

[180]  Jennifer K. Sun,et al.  Diabetic Retinopathy: A Position Statement by the American Diabetes Association , 2017, Diabetes Care.

[181]  S. Osher,et al.  Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM) , 2011, Inverse problems.

[182]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.