Programmable DSP-enabled multi-adaptive optical transceivers based on OFDM technology for software defined networks
暂无分享,去创建一个
The dynamic behavior of the traffic demand, due to the advent of technologies such as cloud services or Internet of Things (IoT), is increasing. In fact, heterogeneous connections with different characteristics (bandwidth or bit rate) are expected that coexist in the optical networks. In this respect, an evolution towards Elastic Optical Networks (EONs) has emerged as a cost-effective, flexible and dynamic solution, to face the new claims. The main idea is the efficient utilization of the optical spectrum by combining flexible transceivers, flexi-grid and flexible optical switching. Including the principles of Software Defined Network (SDN) paradigm further flexibility and adaptability can be achieved.
The Sliceable Bandwidth Variable Transceiver (S-BVT), as a key element in EONs, provides flexibility and adaptability to the optical networks. It is able to dynamically tune the optical bandwidth or bit rate changing parameters such as the modulation format, bandwidth, among others, to find a trade-off between transmission reach and spectral efficiency, serving multiples destinations. The combination of programmable Digital Signal Processing (DSP) modules with advanced transmission techniques based on Orthogonal Frequency Division Multiplexing (OFDM) technology using Direct Detection (DD) or COherent (CO) detection are proposed to be implemented at the S-BVT making it suitable for elastic optical metro/regional networks.
Furthermore, the envisioned migration from fixed-grid to flexi-grid, can benefit from the use of S-BVTs since they are able to generate or receive multiple channels and slicing the aggregated flow into multiples flows with different capacities and destinations. We propose the use of S-BVTs based on multi-band OFDM systems. In particular, we focus on the theoretical model of an advanced transmission technique based on OFDM technology with DD. Then we evaluate the system for a realistic optical metro network. In the context of flexi-grid optical metro/regional networks, as well as the sliceability of the channels, the reduction of channel width for low bit rate connections can be envisioned. It involves that the signal traverses several nodes with the corresponding filtering elements, causing a substantially decrease and distortion of the signal bandwidth. This phenomenon known as filter narrowing effect has been also studied in this thesis, by simulations and experimentally for an adaptive cost-effective OFDM system using DD and for a standard OOK system.
Apart from adaptive, flexible and programmable transceivers, metro optical networks have to be equipped with flexible optical switching systems at the node level. In this respect, we propose the adoption of adaptive S-BVTs based on advanced transmission techniques using DD with Discrete MultiTone (DMT) modulation and adaptive capabilities in combination with Semiconductor Optical Amplier (SOA)-based switching nodes. SOAs can be conveniently used for optical switching in metro networks because of their low cost or low power consumption, among others relevant characteristics. The system has been experimentally analyzed with and without considering filtering elements. Thanks to the combination of adaptive DMT modulation and SOA-based switching nodes, impairments due to the fiber links and the filtering elements can be compensated. Finally, to enhance the tranmission distance and data rate, we propose the combination of multidimensional constellations implemented at the DSP modules of the S-BVT with CO detection and OFDM technology. Thus, the deployed infrastructure is more efficiently exploited since the quadrature and the polarization dimensions are used to transmit the signal. In particular, we focus on CO-OFDM systems using Dual Polarization Quadrature Phase Shift Keying (DPQPSK) constellation transmitting the signal over the time and the polarization dimensions in the optical domain.