Quantum repeaters based on CNOT gate under decoherence

In this paper, we study single-qubit and single-user quantum repeaters based on CNOT gates under decoherence using the Kraus-operator representations of decoherence. We investigate the influence of decoherence on the information-disturbance trade-off of quantum repeaters. It is found that decoherence may lead to the appearance of three subspaces, called as the normal subspace, the anomalous subspace, and the decoherence-free subspace (DFS), respectively. It is indicated that in the normal subspace decoherence decreases the transmission and estimation fidelities, in the anomalous subspace decoherence enhances these fidelities, and in the DFS these fidelities do not change. The concept of the quality factor is introduced to evaluate the quality of the quantum repeater. It is indicated that the quality factor can be efficiently controlled and manipulated by changing the initial state of the probe qubit. It is found that under certain conditions the quantum repeater can be optimal even in the presence of decoherence.

[1]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[2]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[3]  A. D. Boozer,et al.  Reversible state transfer between light and a single trapped atom. , 2007, Physical review letters.

[4]  W. Dur,et al.  Role of memory errors in quantum repeaters , 2007 .

[5]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[6]  K Banaszek Fidelity balance in quantum operations. , 2001, Physical review letters.

[7]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[8]  Colin P. Williams,et al.  Practical quantum repeaters with linear optics and double-photon guns , 2002, quant-ph/0203134.

[9]  Resource reduction via repeaters in entanglement distribution , 2001, quant-ph/0103023.

[10]  Exact dynamics of a quantum dissipative system in a constant external field. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[11]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[12]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[13]  Mo-Lin Ge,et al.  Jaynes-Cummings model with phase damping , 1997 .

[14]  Understanding the destruction of nth-order quantum coherence in terms of multipath interference , 2002, quant-ph/0203082.

[15]  Chang-pu Sun,et al.  Decoherence and relevant universality in quantum algorithms via a dynamic theory for quantum measurement , 1998 .

[16]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[17]  Ekert,et al.  Eavesdropping on quantum-cryptographical systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[19]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[20]  An-Ning Zhang,et al.  Experimental quantum error rejection for quantum communication. , 2006, Physical review letters.

[21]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[22]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[23]  L. Mišta Minimal disturbance measurement for coherent states is non-Gaussian (7 pages) , 2006 .

[24]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Massimiliano F Sacchi Information-disturbance tradeoff in estimating a maximally entangled state. , 2006, Physical review letters.

[26]  Sahin Kaya Ozdemir,et al.  Kraus representation of a damped harmonic oscillator and its application , 2004 .

[27]  C. H. Oh,et al.  Noisy quantum game , 2002 .

[28]  Christian Kurtsiefer,et al.  Decoherence-free quantum information processing with four-photon entangled states. , 2004, Physical review letters.

[29]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[30]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[31]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[32]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[33]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[34]  Dieter Jaksch,et al.  Robust implementations of quantum repeaters , 2006 .

[35]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[36]  Radim Filip,et al.  Experimental demonstration of coherent state estimation with minimal disturbance. , 2006, Physical review letters.

[37]  Marco G. Genoni,et al.  Information/disturbance trade-off in single and sequential measurements on a qudit signal , 2006 .

[38]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[39]  H. Dong,et al.  Partial factorization of wave functions for a quantum dissipative system , 1998 .

[40]  E. Biham,et al.  Security of Quantum Cryptography against Collective Attacks , 1996, quant-ph/9605007.

[41]  S. Haroche,et al.  A complementarity experiment with an interferometer at the quantum–classical boundary , 2001, Nature.

[42]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[43]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[44]  Kuang Le-Man,et al.  Decoherence Sensing of Entangled-Coherent-State Channels via Unambiguous Quantum State Filtering , 2006 .

[45]  Chang-pu Sun,et al.  Quantum measurement via Born-Oppenheimer adiabatic dynamics , 2000 .

[46]  Norbert Lütkenhaus,et al.  ESTIMATES FOR PRACTICAL QUANTUM CRYPTOGRAPHY , 1999 .

[47]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[48]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[49]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[50]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[51]  Kuang Le-Man,et al.  Quantum Decoherence for Multi-Photon Entangled States , 2005 .

[52]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[53]  Lorenzo Maccone Information-disturbance tradeoff in quantum measurements , 2006 .

[54]  Quantum nondemolition measurement saturates fidelity trade-off , 2005, quant-ph/0501031.

[55]  Igor Devetak,et al.  Fidelity trade-off for finite ensembles of identically prepared qubits , 2001 .

[56]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[57]  Synchronized independent narrow-band single photons and efficient generation of photonic entanglement. , 2007, Physical review letters.

[58]  L. Kuang,et al.  The influence of entanglement and decoherence on the quantum Stackelberg duopoly game , 2007 .

[59]  G. Rempe,et al.  Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer , 1998, Nature.

[60]  Li Ke,et al.  Information-Disturbance Tradeoff in Estimating the Unknown Three-Qubit GHZ State , 2007 .

[61]  M. Namiki,et al.  Decoherence and Quantum Measurements , 1998 .

[62]  Quantum Dynamical Approach of Wavefunction Collapse in Measurement Process and Its Application to Quantum Zeno Effect , 1994, hep-th/9409087.

[63]  Chang-pu Sun,et al.  Consistent approach for quantum measurement , 2002 .

[64]  F Sciarrino,et al.  Realization of a minimal disturbance quantum measurement. , 2006, Physical review letters.

[65]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .