A Radio-to-mm Census of Star-forming Galaxies in Protocluster 4C23.56 at Z = 2.5: Gas Mass and Its Fraction Revealed with ALMA

We investigate gas contents of star-forming galaxies associated with protocluster 4C23.56 at z = 2.49 by using the redshifted CO (3–2) and 1.1 mm dust continuum with the Atacama Large Millimeter/submillimeter Array. The observations unveil seven CO detections out of 22 targeted Hα emitters (HAEs) and four out of 19 in 1.1 mm dust continuum. They have high stellar mass ( M⊙) and exhibit a specific star-formation rate typical of main-sequence star-forming galaxies at . Different gas-mass estimators from CO (3–2) and 1.1 mm yield consistent values for simultaneous detections. The gas mass ( ) and gas fraction ( ) are comparable to those of field galaxies, with )) , where is the CO-to-H2 conversion factor and A(Z) is the additional correction factor for the metallicity dependence of , and from CO (3–2). Our measurements place a constraint on the cosmic gas density of high-z protoclusters, indicating that the protocluster is characterized by a gas density higher than that of the general fields by an order of magnitude. We found with the CO(3–2) detections. The five ALMA CO detections occur in the region of highest galaxy surface density, where the density positively correlates with global star-forming efficiency (SFE) and stellar mass. Such correlations possibly indicate a critical role of the environment on early galaxy evolution at high-z protoclusters, though future observations are necessary for confirmation.

[1]  G. Rieke,et al.  PAHS CONTRIBUTION TO THE INFRARED OUTPUT ENERGY OF THE UNIVERSE AT Z ≃ 2 , 2018 .

[2]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[3]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[4]  A. Coil,et al.  The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24 μm Inferred IR Luminosities and Star Formation Rates at z ∼ 2 , 2016, 1609.04814.

[5]  Iap,et al.  Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift , 2016, Science.

[6]  I. Smail,et al.  ALMA Deep Field in SSA22: Source Catalog and Number Counts , 2016, 1611.09857.

[7]  B. Groves,et al.  GAS FRACTION AND DEPLETION TIME OF MASSIVE STAR-FORMING GALAXIES AT z ∼ 3.2: NO CHANGE IN GLOBAL STAR FORMATION PROCESS OUT TO z > 3 , 2016, 1610.03656.

[8]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[9]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS , 2016, 1607.06770.

[10]  H. Rix,et al.  THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: MOLECULAR GAS RESERVOIRS IN HIGH-REDSHIFT GALAXIES , 2016, 1607.06771.

[11]  M. Hayashi,et al.  ENHANCED STAR FORMATION OF LESS MASSIVE GALAXIES IN A PROTOCLUSTER AT z = 2.5 , 2016, 1607.04040.

[12]  J. Carlstrom,et al.  COPSS II: THE MOLECULAR GAS CONTENT OF TEN MILLION CUBIC MEGAPARSECS AT REDSHIFT z ∼ 3 , 2016, 1605.03971.

[13]  B. Mobasher,et al.  THE EFFECTS OF THE LOCAL ENVIRONMENT AND STELLAR MASS ON GALAXY QUENCHING TO z ∼ 3 , 2016, 1605.03182.

[14]  C. Casey THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS , 2016, 1603.04437.

[15]  R. Genzel,et al.  KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS , 2016, 1603.03432.

[16]  A. Coil,et al.  THE MOSDEF SURVEY: THE STRONG AGREEMENT BETWEEN Hα AND UV-TO-FIR STAR FORMATION RATES FOR z ∼ 2 STAR-FORMING GALAXIES , 2016, 1603.02284.

[17]  D. Koo,et al.  EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3 , 2016, 1602.03909.

[18]  G. Dalton,et al.  PROPERTIES OF THE INTERSTELLAR MEDIUM IN STAR-FORMING GALAXIES AT z ∼ 1.4 REVEALED WITH ALMA , 2016, 1601.06783.

[19]  S. Serjeant,et al.  The JCMT Nearby Galaxies Legacy Survey X. Environmental Effects on the Molecular Gas and Star Formation Properties of Spiral Galaxies , 2015, 1512.05768.

[20]  M. Jarvis,et al.  A MATURE GALAXY CLUSTER AT z = 1.58 AROUND THE RADIO GALAXY 7C 1753+6311 , 2015, 1511.05150.

[21]  U. Toronto,et al.  Early Science with the Large Millimeter Telescope: COOL BUDHIES I - a pilot study of molecular and atomic gas at z ≃ 0.2 , 2015, 1510.08450.

[22]  C. Baugh,et al.  The environments of high redshift radio galaxies and quasars: probes of protoclusters , 2015, 1509.01254.

[23]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[24]  R. Genzel,et al.  Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA , 2015, 1511.05147.

[25]  A. Coil,et al.  THE MOSDEF SURVEY: DYNAMICAL AND BARYONIC MASSES AND KINEMATIC STRUCTURES OF STAR-FORMING GALAXIES AT 1.4 ≤ z ≤ 2.6 , 2015, 1511.03272.

[26]  I. Smail,et al.  ALMA DEEP FIELD IN SSA22: A CONCENTRATION OF DUSTY STARBURSTS IN A z = 3.09 PROTOCLUSTER CORE , 2015, 1510.08861.

[27]  Detection of Molecular Gas in Void Galaxies : Implications for Star Formation in Isolated Environments , 2015, 1510.07411.

[28]  Granada,et al.  STAR FORMATION SUPPRESSION IN COMPACT GROUP GALAXIES: A NEW PATH TO QUENCHING? , 2015, 1509.05779.

[29]  I. Smail,et al.  On the nature of Hα emitters at z ˜ 2 from the HiZELS survey: physical properties, Lyα escape fraction and main sequence , 2015 .

[30]  K. Souccar,et al.  Early Science with the Large Millimeter Telescope: CO and [C ii] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1) , 2015, 1508.05425.

[31]  L. Kewley,et al.  ZFIRE: GALAXY CLUSTER KINEMATICS, Hα STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT z cl = 1.6233 ?> , 2015, 1508.03057.

[32]  S. Warren,et al.  HIGH-RESOLUTION IMAGING OF PHIBSS z ∼ 2 MAIN-SEQUENCE GALAXIES IN CO J = 1 → 0 , 2015, 1507.05652.

[33]  E. Cooke,et al.  What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters , 2015, 1506.08835.

[34]  D. Schneider,et al.  SURVEYING GALAXY PROTO-CLUSTERS IN EMISSION: A LARGE-SCALE STRUCTURE AT z = 2.44 AND THE OUTLOOK FOR HETDEX , 2015, 1505.03877.

[35]  F. Walter,et al.  AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING , 2015, 1504.04376.

[36]  D. Iono,et al.  ALMA MULTI-LINE OBSERVATIONS OF THE IR-BRIGHT MERGER VV 114 , 2015, 1501.07373.

[37]  F. Bertoldi,et al.  A blind CO detection of a distant red galaxy in the HS1700+64 protocluster. , 2015, 1501.02839.

[38]  L. Kewley,et al.  A TURNOVER IN THE GALAXY MAIN SEQUENCE OF STAR FORMATION AT M* ∼ 1010 M☉ FOR REDSHIFTS z < 1.3 , 2015, 1501.01080.

[39]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[40]  Ichi Tanaka,et al.  An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z > 2 , 2014, 1406.5219.

[41]  Institute for Astronomy,et al.  METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2 , 2014, 1410.1437.

[42]  D. Elbaz,et al.  CO excitation of normal star forming galaxies out to $z=1.5$ as regulated by the properties of their interstellar medium , 2014, 1409.8158.

[43]  C. A. Oxborrow,et al.  Planck intermediate results - XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope , 2014, 1407.6663.

[44]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[45]  Masayuki Tanaka,et al.  A FIRST SITE OF GALAXY CLUSTER FORMATION: COMPLETE SPECTROSCOPY OF A PROTOCLUSTER AT z = 6.01 , 2014, 1407.1851.

[46]  G. Fazio,et al.  Galaxies in 3D across the Universe , 2014, Proceedings of the International Astronomical Union.

[47]  R. Bender,et al.  A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < z < 2.6 , 2014, 1405.6590.

[48]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[49]  M. Hayashi,et al.  THE ENVIRONMENTAL IMPACTS ON THE STAR FORMATION MAIN SEQUENCE: AN Hα STUDY OF THE NEWLY DISCOVERED RICH CLUSTER AT z = 1.52 , 2014, 1405.4165.

[50]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[51]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[52]  David Elbaz,et al.  Dust and gas in luminous proto-cluster galaxies at z=4.05: the case for different cosmic dust evolution in normal and starburst galaxies , 2014, 1403.7992.

[53]  Ichi Tanaka,et al.  EVIDENCE FOR A GAS-RICH MAJOR MERGER IN A PROTO-CLUSTER AT z = 2.5 , 2014, 1403.0040.

[54]  G. Gavazzi,et al.  Cold gas properties of the herschel reference survey: III. Molecular gas stripping in cluster galaxies , 2014, 1402.0326.

[55]  K. Sheth,et al.  THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2 , 2014, The Astrophysical Journal.

[56]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[57]  I. Smail,et al.  The stellar mass function of star-forming galaxies and the mass-dependent SFR function since z = 2.23 from HiZELS , 2013, 1311.1503.

[58]  R. Muñoz,et al.  Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.

[59]  D. Elbaz,et al.  REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE , 2013, 1303.4392.

[60]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[61]  H. Rix,et al.  A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH , 2013, 1312.6364.

[62]  M. Hayashi,et al.  NATURE OF Hα SELECTED GALAXIES AT z > 2. I. MAIN-SEQUENCE AND DUSTY STAR-FORMING GALAXIES , 2013, 1311.4259.

[63]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[64]  S. Wuyts,et al.  VALIDATION OF THE EQUILIBRIUM MODEL FOR GALAXY EVOLUTION TO z ∼ 3 THROUGH MOLECULAR GAS AND DUST OBSERVATIONS OF LENSED STAR-FORMING GALAXIES , 2013, 1309.3281.

[65]  P. P. van der Werf,et al.  SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL , 2013, 1309.1525.

[66]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[67]  J. Bock,et al.  Herschel reveals the obscured star formation in HiZELS Hα emitters at z = 1.47 , 2013, 1307.3556.

[68]  C. Steidel,et al.  THE MASS–METALLICITY RELATION OF A z ∼ 2 PROTOCLUSTER WITH MOSFIRE , 2013, 1306.6334.

[69]  A. Cimatti,et al.  GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z ∼ 2 , 2013, 1305.3577.

[70]  H. Rix,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: SOURCE CATALOG AND MULTIPLICITY , 2013, 1304.4266.

[71]  A. M. Swinbank,et al.  On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ∼ 2 , 2013, 1302.5315.

[72]  -INAF,et al.  CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2) , 2013, 1301.6012.

[73]  A. M. Swinbank,et al.  CONCURRENT SUPERMASSIVE BLACK HOLE AND GALAXY GROWTH: LINKING ENVIRONMENT AND NUCLEAR ACTIVITY IN z = 2.23 Hα EMITTERS , 2013, 1301.3922.

[74]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[75]  D. Wilner,et al.  SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW , 2013, 1301.1878.

[76]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[77]  F. Boulanger,et al.  SHOCK-ENHANCED C + EMISSION AND THE DETECTION OF H2O FROM STEPHAN QUINTET'S GROUP-WIDE SHOCK USING HERSCHEL , 2013 .

[78]  D.Lutz,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES* , 2012 .

[79]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[80]  P. McCarthy,et al.  DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ⩽ z ⩽ 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY , 2012, 1206.1867.

[81]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[82]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[83]  Oxford,et al.  Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon dominated regions , 2012, 1204.0795.

[84]  C. Breuck,et al.  THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES , 2012, 1202.4489.

[85]  C. Breuck,et al.  Overdensities of 24 μm sources in the vicinities of high-redshift radio galaxies , 2012, 1202.4490.

[86]  M. Postman,et al.  EARLY-TYPE GALAXIES AT z ∼ 1.3. IV. SCALING RELATIONS IN DIFFERENT ENVIRONMENTS , 2011, 1109.0284.

[87]  Timothy A. Davis,et al.  The ATLAS3D project - XIII. Mass and morphology of H I in early-type galaxies as a function of environment , 2011, 1111.4241.

[88]  McGill,et al.  Star formation at z=1.47 from HiZELS: an Hα+[O ii] double-blind study* , 2011, 1109.1830.

[89]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[90]  B. Weiner,et al.  THE METALLICITY DEPENDENCE OF THE CO → H2 CONVERSION FACTOR IN z ⩾ 1 STAR-FORMING GALAXIES , 2011, 1106.2098.

[91]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[92]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[93]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[94]  L. Pentericci,et al.  Hα emitters in z∼ 2 protoclusters: evidence for faster evolution in dense environments , 2011, 1103.4364.

[95]  European Southern Observatory,et al.  Discovery of an excess of Hα emitters around 4C 23.56 at z = 2.48 , 2010, 1012.1869.

[96]  K. Blundell,et al.  The X-ray and radio-emitting plasma lobes of 4C23.56: further evidence of recurrent jet activity and high acceleration energies , 2010, 1008.5042.

[97]  C. Carilli,et al.  A MASSIVE MOLECULAR GAS RESERVOIR IN THE z = 5.3 SUBMILLIMETER GALAXY AzTEC-3 , 2010, 1008.0389.

[98]  P. Best,et al.  Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.

[99]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[100]  Astronomy,et al.  COMPARING THE RELATION BETWEEN STAR FORMATION AND GALAXY MASS IN DIFFERENT ENVIRONMENTS , 2009, 0912.1180.

[101]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[102]  M. Nonino,et al.  FORMATION EPOCHS, STAR FORMATION HISTORIES, AND SIZES OF MASSIVE EARLY-TYPE GALAXIES IN CLUSTER AND FIELD ENVIRONMENTS AT z = 1.2: INSIGHTS FROM THE REST-FRAME ULTRAVIOLET , 2008, 0806.4604.

[103]  Bernd Vollmer,et al.  VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I. THE ATLAS AND THE H i PROPERTIES , 2009 .

[104]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - V. Witnessing the assembly at z = 1.6 of a galaxy cluster , 2009, 0906.4489.

[105]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[106]  S. Rawlings,et al.  A HEURISTIC PREDICTION OF THE COSMIC EVOLUTION OF THE CO-LUMINOSITY FUNCTIONS , 2009, 0907.3091.

[107]  S. Rawlings,et al.  THE COSMIC DECLINE IN THE H2/H i RATIO IN GALAXIES , 2009, 0904.0213.

[108]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[109]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[110]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[111]  S. Bamford,et al.  The Relation between Star Formation, Morphology, and Local Density in High-Redshift Clusters and Groups , 2008, 0805.1145.

[112]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[113]  C. Papovich,et al.  Mid-Infrared Spectroscopy of Lensed Galaxies at 1 < z < 3: The Nature of Sources Near the MIPS Confusion Limit , 2007, 0711.1902.

[114]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[115]  G. Gavazzi,et al.  The Arecibo Galaxy Environment Survey II: a H I view of the Abell cluster 1367 and its outskirts , 2007, 0711.0684.

[116]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[117]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[118]  R. Faix,et al.  Red Book: 2006 Report of the Committee on Infectious Diseases, 27th Edition Edited by Larry K. Pickering, Carol F. Baker, Sarah S. Long, and Julia A. McMillan Elk Grove Village, IL: American Academy of Pediatrics, 2006. 992 pp. $124.95 (cloth) , 2007 .

[119]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[120]  Cambridge,et al.  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[121]  Tetsuo Nishimura,et al.  MOIRCS: multi-object infrared camera and spectrograph for SUBARU , 2006, SPIE Astronomical Telescopes + Instrumentation.

[122]  Toru Yamada,et al.  Protoclusters with evolved populations around radio galaxies at z∼ 2.5 , 2006, astro-ph/0606407.

[123]  H. Rottgering,et al.  Clustering of Star-forming Galaxies Near a Radio Galaxy at z = 5.2 , 2005, astro-ph/0509308.

[124]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[125]  G. Rieke,et al.  POLYCYCLIC AROMATIC HYDROCARBON CONTRIBUTION TO THE INFRARED OUTPUT ENERGY OF THE UNIVERSE AT z 2 , 2004, astro-ph/0406016.

[126]  H. Rottgering,et al.  A multi-wavelength study of the proto-cluster surrounding the z =4.1 radio galaxy TN J1338-1942 , 2004, astro-ph/0405339.

[127]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[128]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[129]  C. Breuck,et al.  The radio galaxy K-z relation: The $\mathsf{10^{12}}~$M$\mathsf{_\odot}$ mass limit - Masses of galaxies from the L$\mathsf{_{K}}$ luminosity, up to z $\mathsf{> 4}$ , 2003, astro-ph/0311490.

[130]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[131]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[132]  H. Rottgering,et al.  Red galaxy overdensities and the varied cluster environments of powerful radio sources with z~1.6 , 2003, astro-ph/0304035.

[133]  A. Olmo,et al.  Where is the neutral atomic gas in Hickson groups , 2001, astro-ph/0108223.

[134]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[135]  R. Carlberg,et al.  The Dependence of Cluster Galaxy Star Formation Rates on the Global Environment , 1998, astro-ph/9806146.

[136]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[137]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[138]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[139]  K. Chambers,et al.  Deep Imaging of the Field of the High-Redshift Radio Source 4C 23.56 , 1997 .

[140]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[141]  O. Fèvre,et al.  Clustering around the Radio Galaxy MRC 0316–257 at z = 3.14 , 1996, astro-ph/9609020.

[142]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[143]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[144]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[145]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[146]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .

[147]  M. Schmidt The Rate of Star Formation , 1959 .