Field-Coupled Nanocomputing

Quantum-dot cellular automata (QCA) is a paradigm for connecting nanoscale bistable devices to accomplish general-purpose computation. The idea has its origins in the technology of quantum dots, Coulomb blockade, and Landauer’s observations on digital devices and energy dissipation. We examine the early development of this paradigm and its various implementations.

[1]  Sanjukta Bhanja,et al.  Magnetic cellular automata coplanar cross wire systems , 2010 .

[2]  John P. Hayes,et al.  Data structures and algorithms for simplifying reversible circuits , 2006, JETC.

[3]  Nahid Imtiaz Chowdhury,et al.  A Beginning In The Reversible Logic Synthesis of Sequential Circuits , 2013 .

[4]  V. Semenov,et al.  Classical and Quantum Operation Modes of the Reversible Josephson-Junction Logic Circuits , 2007, IEEE Transactions on Applied Superconductivity.

[5]  Amir Fijany,et al.  New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates , 2001 .

[6]  Ismo Hänninen,et al.  Robust Adders Based on Quantum-Dot Cellular Automata , 2007, 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP).

[7]  W. Porod,et al.  Simulation of Magnetization Reversal and Domain-Wall Trapping in Submicron Permalloy Wires With Different Wire Geometries , 2012, IEEE Transactions on Nanotechnology.

[8]  Earl E. Swartzlander,et al.  Serial Parallel Multiplier Design in Quantum-dot Cellular Automata , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[9]  Peter M. Kogge,et al.  A Potentially Implementable FPGA for Quantum-Dot Cellular Automata , 2002 .

[10]  Wolfgang Porod,et al.  Magnetic Quantum-dot Cellular Automata (MQCA) , 2006 .

[11]  Barry W. Johnson,et al.  Concurrent testing of VLSI circuits using conservative logic , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[12]  Niraj K. Jha,et al.  A Test Generation Framework for Quantum Cellular Automata Circuits , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[13]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[14]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[15]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[16]  Jacqueline E. Rice,et al.  A new look at reversible memory elements , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[17]  Zengxiao Jin,et al.  Fabrication and Measurement of Molecular Quantum Cellular Automata (QCA) Device , 2006 .

[18]  Niraj K. Jha,et al.  An Algorithm for Synthesis of Reversible Logic Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  R. Blakemore,et al.  Magnetotactic bacteria , 1975, Science.

[20]  Robert Wille,et al.  Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Wolfgang Porod,et al.  Simulation of Field Coupled Computing Architectures Based on Magnetic Dot Arrays , 2002 .

[22]  Wolfgang Porod,et al.  Magnetic quantum-dot cellular automata: Recent developments and prospects , 2008 .

[23]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[24]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[25]  W. Porod,et al.  Non-majority magnetic logic gates: a review of experiments and future prospects for ‘shape-based’ logic , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Tanay Chattopadhyay,et al.  Mach–Zehnder interferometer-based all-optical reversible logic gate , 2010 .

[27]  Michael Niemier,et al.  Switching behavior of lithographically fabricated nanomagnets for logic applications , 2012 .

[28]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[29]  Fabrizio Lombardi,et al.  HDLQ: A HDL environment for QCA design , 2006, JETC.

[30]  Dmitri E. Nikonov,et al.  Magnetoelectric spin wave amplifier for spin wave logic circuits , 2009 .

[31]  Tongquan Wei,et al.  Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[32]  Bibhash Sen,et al.  Fault Tolerant QCA Logic Design With Coupled Majority-Minority Gate , 2010 .

[33]  N. Ranganathan,et al.  Reversible Logic-Based Concurrently Testable Latches for Molecular QCA , 2010, IEEE Transactions on Nanotechnology.

[34]  Peng Wang,et al.  Minimal majority gate mapping of 4-variable functions for quantum cellular automata , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[35]  Sanjukta Bhanja,et al.  A review of magnetic cellular automata systems , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[36]  Jing Huang,et al.  Detecting Multiple Faults in One-Dimensional Arrays of Reversible QCA Gates , 2009, J. Electron. Test..

[37]  Yun Shang,et al.  An Optimized Majority Logic Synthesis Methodology for Quantum-Dot Cellular Automata , 2010, IEEE Transactions on Nanotechnology.

[38]  W. Porod,et al.  Non-volatile and reprogrammable MQCA-based majority gates , 2009, 2009 Device Research Conference.

[39]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[40]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[41]  Neal G. Anderson,et al.  Heat dissipation bounds for nanocomputing: Theory and application to QCA , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[42]  Jing Huang,et al.  Analysis of missing and additional cell defects in sequential quantum-dot cellular automata , 2007, Integr..

[43]  Baris Taskin,et al.  A shift-register-based QCA memory architecture , 2009, ACM J. Emerg. Technol. Comput. Syst..

[44]  Paul R Prucnal,et al.  Experimental demonstration of an all-optical fiber-based Fredkin gate. , 2009, Optics letters.

[45]  Robert Wille,et al.  Exact Synthesis of Elementary Quantum Gate Circuits , 2009, J. Multiple Valued Log. Soft Comput..

[46]  Wolfgang Porod,et al.  Controlled domain wall motion in micron-scale permalloy square rings , 2003 .

[47]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[48]  Jaw-Shen Tsai,et al.  Progress Towards Reversible Computing With nSQUID Arrays , 2009, IEEE Transactions on Applied Superconductivity.

[49]  W. Porod,et al.  On-Chip Clocking of Nanomagnet Logic Lines and Gates , 2012, IEEE Transactions on Nanotechnology.

[50]  Alva,et al.  Design of Testable Reversible Sequential Circuits , 2014 .

[51]  Gerhard W. Dueck,et al.  Reversible cascades with minimal garbage , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[52]  W. Porod,et al.  Shape Engineering for Controlled Switching With Nanomagnet Logic , 2012, IEEE Transactions on Nanotechnology.

[53]  S. Srivastava,et al.  Are QCA cryptographic circuits resistant to power analysis attack? , 2012, IEEE Transactions on Nanotechnology.

[54]  W. Porod,et al.  Domain-Wall Assisted Switching of Single-Domain Nanomagnets , 2012, IEEE Transactions on Magnetics.

[55]  Kenichi Morita,et al.  Reversible computing and cellular automata - A survey , 2008, Theor. Comput. Sci..

[56]  Hafizur Rahaman,et al.  On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set , 2008, 21st International Conference on VLSI Design (VLSID 2008).

[57]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[58]  Jing Huang,et al.  Reversible Gates and Testability of One Dimensional Arrays of Molecular QCA , 2008, J. Electron. Test..

[59]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[60]  Robert H. Dennard,et al.  Practical Strategies for Power-Efficient Computing Technologies , 2010, Proceedings of the IEEE.

[61]  Mehdi Baradaran Tahoori,et al.  Online fault testing of reversible logic using dual rail coding , 2010, 2010 IEEE 16th International On-Line Testing Symposium.

[62]  Natesh Ganesh,et al.  Toward nanoprocessor thermodynamics , 2012 .

[63]  Wolfgang Porod,et al.  Clocking magnetic field-coupled devices by domain walls , 2012 .

[64]  W. Porod,et al.  Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[65]  Mohmmad T. Alam,et al.  On-Chip Clocking for Nanomagnet Logic Devices , 2010, IEEE Transactions on Nanotechnology.

[66]  Peng Li,et al.  Direct Measurement of Magnetic Coupling Between Nanomagnets for Nanomagnetic Logic Applications , 2012, IEEE Transactions on Magnetics.

[67]  Marco Ottavi,et al.  On the design of reversible QDCA systems. , 2006 .

[68]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[69]  Michael P. Frank,et al.  Approaching the physical limits of computing , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[70]  N. Ranganathan,et al.  Design, Synthesis and Test of Reversible Circuits for Emerging Nanotechnologies , 2012, 2012 IEEE Computer Society Annual Symposium on VLSI.

[71]  W. Porod,et al.  Experimental Demonstration of Fanout for Nanomagnetic Logic , 2010, IEEE Transactions on Nanotechnology.

[72]  Massoud Pedram,et al.  A new design of double edge triggered flip-flops , 1998, Proceedings of 1998 Asia and South Pacific Design Automation Conference.

[73]  W. Porod,et al.  Quantum-dot cellular automata: Review and recent experiments (invited) , 1999 .

[74]  Jie Ren,et al.  Progress With Physically and Logically Reversible Superconducting Digital Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[75]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[76]  Guowu Yang,et al.  Bi-Directional Synthesis of 4-Bit Reversible Circuits , 2008, Comput. J..

[77]  Ramesh Karri,et al.  The Robust QCA Adder Designs Using Composable QCA Building Blocks , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[78]  Chun-Yao Wang,et al.  Synthesis of Reversible Sequential Elements , 2007 .

[79]  Wolfgang Porod,et al.  Systolic Pattern Matching Hardware With Out-of-Plane Nanomagnet Logic Devices , 2013, IEEE Transactions on Nanotechnology.

[80]  Jeffrey Bokor,et al.  Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic , 2013 .

[81]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[82]  A. Prasad Vinod,et al.  Design of Reversible Sequential Elements With Feasibility of Transistor Implementation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[83]  Kamakoti Veezhinathan,et al.  Constructing Online Testable Circuits Using Reversible Logic , 2010, IEEE Transactions on Instrumentation and Measurement.

[84]  Fabrizio Lombardi,et al.  Modeling QCA defects at molecular-level in combinational circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[85]  B. Parhami,et al.  Fault-Tolerant Reversible Circuits , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[86]  J. Hayes,et al.  Fault testing for reversible circuits , 2003, Proceedings. 21st VLSI Test Symposium, 2003..

[87]  N. Ranganathan,et al.  Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs , 2010, JETC.

[88]  W. Porod,et al.  Exploring the Design of the Magnetic–Electrical Interface for Nanomagnet Logic , 2013, IEEE Transactions on Nanotechnology.

[89]  F. Lombardi,et al.  Testing of quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[90]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[91]  W. Porod,et al.  Magnetic Properties of Enhanced Permeability Dielectrics for Nanomagnetic Logic Circuits , 2012, IEEE Transactions on Magnetics.

[92]  Wolfgang Porod Quantum-dot cellular automata devices and architectures , 1998 .

[93]  Wei Wang,et al.  Performance Comparison of Quantum-dot Cellular , 2005 .

[94]  Parag K. Lala,et al.  Reversible-logic design with online testability , 2006, IEEE Transactions on Instrumentation and Measurement.

[95]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[96]  W. Porod,et al.  Magnetic–Electrical Interface for Nanomagnet Logic , 2011, IEEE Transactions on Nanotechnology.

[97]  Wolfgang Porod,et al.  Investigation of shape-dependent switching of coupled nanomagnets , 2003 .

[98]  John P. Hayes,et al.  A Family of Logical Fault Models for Reversible Circuits , 2005, 14th Asian Test Symposium (ATS'05).

[99]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[100]  G H Bernstein,et al.  Nanomagnet logic: progress toward system-level integration , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[101]  Dhiraj K. Pradhan,et al.  Design of Reversible Finite Field Arithmetic Circuits with Error Detection , 2008, 21st International Conference on VLSI Design (VLSID 2008).

[102]  S. Bhanja,et al.  Magnetic Cellular Automata Wire Architectures , 2011, IEEE Transactions on Nanotechnology.

[103]  I. Sengupta,et al.  A DFT methodology for detecting bridging faults in reversible logic circuits , 2007, TENCON 2007 - 2007 IEEE Region 10 Conference.

[104]  Sanjukta Bhanja,et al.  QCA Circuits for Robust Coplanar Crossing , 2007, J. Electron. Test..

[105]  D. Schmitt-Landsiedel,et al.  Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled Computing , 2008, IEEE Transactions on Nanotechnology.

[106]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[107]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[108]  Wolfgang Porod,et al.  A computing architecture composed of field‐coupled single domain nanomagnets clocked by magnetic field , 2003, Int. J. Circuit Theory Appl..