A posteriori error estimators for mixed finite element methods in linear elasticity
暂无分享,去创建一个
[1] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[2] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[3] Rüdiger Verfürth,et al. On the stability of BDMS and PEERS elements , 2004, Numerische Mathematik.
[4] Dietrich Braess,et al. A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .
[5] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[6] Carsten Carstensen,et al. A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.
[7] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .
[8] A. Alonso. Error estimators for a mixed method , 1996 .
[9] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[10] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[11] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[12] Douglas N. Arnold,et al. Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials , 1987 .
[13] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.