The Radiation Environments of Middle-aged F-type Stars

Far-ultraviolet (FUV) emission lines from dwarf stars are important driving sources of photochemistry in planetary atmospheres. Properly interpreting spectral features of planetary atmospheres critically depends on the emission of its host star. While the spectral energy distributions (SEDs) of K- and M-type stars have been extensively characterized by previous observational programs, the full X-ray to infrared SED of F-type stars has not been assembled to support atmospheric modeling. On the second flight of the Suborbital Imaging Spectrograph for Transition-region Irradiance from Nearby Exoplanet host stars (SISTINE-2) rocket-borne spectrograph, we successfully captured the FUV spectrum of Procyon A (F5 IV-V) and made the first simultaneous observation of several emission features across the FUV bandpass (1010–1270 and 1300–1565 Å) of any cool star. We combine flight data with stellar models and archival observations to develop the first SED of a mid-F star. We model the response of a modern Earth-like exoplanet’s upper atmosphere to the heightened X-ray and extreme UV radiation within the habitable zone of Procyon A. These models indicate that this planet would not experience significant atmospheric escape. We simulate observations of the Lyα transit signal of this exoplanet with the Hubble Space Telescope (HST) and the Habitable Worlds Observatory (HWO). While marginally detectable with HST, we find that H i Lyα transits of potentially habitable exoplanets orbiting high radial velocity F-type stars could be observed with HWO for targets up to 150 pc away.

[1]  K. Volk,et al.  Water and an Escaping Helium Tail Detected in the Hazy and Methane-depleted Atmosphere of HAT-P-18b from JWST NIRISS/SOSS , 2022, The Astrophysical Journal Letters.

[2]  N. Terada,et al.  Survival of Terrestrial N2–O2 Atmospheres in Violent XUV Environments through Efficient Atomic Line Radiative Cooling , 2022, The Astrophysical Journal.

[3]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[4]  Guo Chen,et al.  Modeling the Hα and He 10830 Transmission Spectrum of WASP-52b , 2022, The Astrophysical Journal.

[5]  F. Dai,et al.  Detection of Atmospheric Escape from Four Young Mini-Neptunes , 2022, The Astronomical Journal.

[6]  R. Pierrehumbert,et al.  The impact of ultraviolet heating and cooling on the dynamics and observability of lava planet atmospheres , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  Rose K. Gibson,et al.  HAZMAT. VIII. A Spectroscopic Analysis of the Ultraviolet Evolution of K Stars: Additional Evidence for K Dwarf Rotational Stalling in the First Gigayear , 2022, The Astrophysical Journal.

[8]  L. Decin,et al.  Grid of pseudo-2D chemistry models for tidally locked exoplanets -- II. The role of photochemistry , 2022, 2203.11233.

[9]  J. Linsky,et al.  Intrinsic Lyα Profiles of High-velocity G, K, and M Dwarfs , 2022, The Astrophysical Journal.

[10]  R. Hu Photochemistry and Spectral Characterization of Temperate and Gas-rich Exoplanets , 2021, The Astrophysical Journal.

[11]  Kevin France,et al.  The assembly, calibration, and predicted performance of the SISTINE-2 sounding rocket payload , 2021, Optical Engineering + Applications.

[12]  J. Pineda,et al.  FUMES. II. Lyα Reconstructions of Young, Active M Dwarfs , 2021, The Astrophysical Journal.

[13]  David J. Wilson,et al.  The Mega-MUSCLES Spectral Energy Distribution of TRAPPIST-1 , 2021, The Astrophysical Journal.

[14]  David J. Wilson,et al.  Reconstructing the Extreme Ultraviolet Emission of Cool Dwarfs Using Differential Emission Measure Polynomials , 2021, The Astrophysical Journal.

[15]  M. Hayden,et al.  The GALAH+ Survey: A new library of observed stellar spectra improves radial velocities and hints at motions within M67 , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  T. Barman,et al.  HAZMAT. VII. The Evolution of Ultraviolet Emission with Age and Rotation for Early M Dwarf Stars , 2020, 2011.10158.

[17]  Jake T. Clark,et al.  The GALAH+ survey: Third data release , 2020, 2011.02505.

[18]  David J. Wilson,et al.  The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last? , 2020, The Astronomical Journal.

[19]  E. Kite,et al.  Exoplanet secondary atmosphere loss and revival , 2020, Proceedings of the National Academy of Sciences.

[20]  N. Cowan,et al.  Keeping M-Earths habitable in the face of atmospheric loss by sequestering water in the mantle , 2020, 2006.08514.

[21]  E. Dorfi,et al.  Transit Lyman-α signatures of terrestrial planets in the habitable zones of M dwarfs , 2019, Astronomy & Astrophysics.

[22]  P. Schneider,et al.  A Hot Ultraviolet Flare on the M Dwarf Star GJ 674 , 2019, The Astrophysical Journal.

[23]  L.A.Buchhave,et al.  Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b , 2018, 1812.05119.

[24]  D. Ehrenreich,et al.  Observability of hydrogen-rich exospheres in Earth-like exoplanets , 2018, Astronomy & Astrophysics.

[25]  Kevin France,et al.  Far-ultraviolet Activity Levels of F, G, K, and M Dwarf Exoplanet Host Stars , 2018, The Astrophysical Journal Supplement Series.

[26]  Kevin France,et al.  The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs , 2018, The Astrophysical Journal.

[27]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[28]  L. M. Sarro,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[29]  H. Rix,et al.  The GALAH survey: An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS , 2018, Astronomy & Astrophysics.

[30]  Lisa Kaltenegger,et al.  Spectra of Earth-like Planets through Geological Evolution around FGKM Stars , 2017, 1712.10027.

[31]  Kevin France,et al.  Advanced Environmentally Resistant Lithium Fluoride Mirror Coatings for the Next-Generation of Broadband Space Observatories , 2017, 1801.03102.

[32]  N. Crouzet,et al.  The Transiting Exoplanet Community Early Release Science Program , 2017 .

[33]  Kevin France,et al.  The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design , 2017, Optical Engineering + Applications.

[34]  A. Castro,et al.  On the feasibility of studying the exospheres of Earth-like exoplanets by Lyman-α monitoring , 2017, Experimental Astronomy.

[35]  L. Hallis D/H ratios of the inner Solar System , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  J. Qin,et al.  Non-thermal hydrogen atoms in the terrestrial upper thermosphere , 2016, Nature Communications.

[37]  Carlos Bacigalupo,et al.  The GALAH survey: the data reduction pipeline , 2016, 1608.04391.

[38]  Kevin France,et al.  SISTINE: a pathfinder for FUV imaging spectroscopy on future NASA astrophysics missions , 2016, Astronomical Telescopes + Instrumentation.

[39]  O. H. W. Siegmund,et al.  Characterization of borosilicate microchannel plates functionalized by atomic layer deposition , 2015, SPIE Optical Engineering + Applications.

[40]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[41]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[42]  R. Klessen,et al.  Physical Processes in the Interstellar Medium , 2014, 1412.5182.

[43]  Manuel A. Quijada,et al.  Enhanced far-ultraviolet reflectance of MgF2 and LiF over-coated Al mirrors , 2014, Astronomical Telescopes and Instrumentation.

[44]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[45]  J. Linsky,et al.  High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets , 2013, 1310.2590.

[46]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[47]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[48]  Sharon R. Jelinsky,et al.  Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors , 2012 .

[49]  J. Vial,et al.  The solar hydrogen Lyman alpha to Lyman beta line ratio , 2012 .

[50]  A. Matter,et al.  Three-dimensional interferometric, spectrometric, and planetary views of Procyon , 2012, 1201.3264.

[51]  D. Kipping Investigations of approximate expressions for the transit duration , 2010, 1004.3819.

[52]  W. Curdt,et al.  Hydrogen Lyman-α and Lyman-β spectral radiance profiles in the quiet Sun , 2009, 0907.1069.

[53]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[54]  P. Dufour,et al.  The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample , 2009, 1706.00709.

[55]  B. Schmieder,et al.  On Lyman-line asymmetries in quiescent prominences , 2008 .

[56]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[57]  H.-G. Ludwig,et al.  On the Limb Darkening, Spectral Energy Distribution, and Temperature Structure of Procyon , 2005, astro-ph/0507336.

[58]  J. Linsky,et al.  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres , 2005, astro-ph/0503372.

[59]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[60]  P. Bordé,et al.  The diameter and evolutionary state of Procyon A. Multi-technique modeling using asteroseismic and i , 2003, astro-ph/0309148.

[61]  R. D. Robinson,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Late-Type Dwarf Stars , 2002 .

[62]  Harry L. Shipman,et al.  Procyon B: Outside the Iron Box , 2002 .

[63]  M. Ruiz,et al.  Photometric and Spectroscopic Analysis of Cool White Dwarfs with Trigonometric Parallax Measurements , 2000, astro-ph/0011286.

[64]  J. Linsky,et al.  Heliospheric, Astrospheric, and Interstellar Lyα Absorption toward 36 Ophiuchi , 2000, astro-ph/0002444.

[65]  Stuart Bowyer,et al.  Hot White Dwarfs in the Local Interstellar Medium: Hydrogen and Helium Interstellar Column Densities and Stellar Effective Temperatures from Extreme-Ultraviolet Explorer Spectroscopy , 1995 .

[66]  R. Meier Solar Lyman series line profiles and atomic hydrogen excitation rates , 1995 .

[67]  J. Linsky,et al.  Deuterium and the Local Interstellar Medium: Properties for the Procyon and Capella Lines of Sight , 1995 .

[68]  J. Drake,et al.  Stellar Coronal Abundances. II. The First Ionization Potential Effect and Its Absence in the Corona of Procyon , 1995 .

[69]  T. Ayres The many faces of F stars - A rotational modulation study of Capella, Procyon, and Caph with the International Ultraviolet Explorer , 1991 .

[70]  A. D. Feinstein,et al.  Peer Review File Manuscript Title: Photochemically-produced SO2 in the atmosphere of WASP-39b Reviewer Comments & Author Rebuttals , 2023 .

[71]  Pathways to Discovery in Astronomy and Astrophysics for the 2020s , 2021 .

[72]  V. Hertzog,et al.  Physical Processes In The Interstellar Medium , 2016 .

[73]  Oswald H. W. Siegmund,et al.  Atomic layer deposition of alternative glass microchannel plates , 2016 .

[74]  O. Siegmund UV, X-ray, and gamma-ray space instrumentation for astronomy XV : 26-27 August 2007, San Diego, California, USA , 2007 .

[75]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[76]  M. Audard,et al.  UvA-DARE ( Digital Academic Repository ) High-resolution X-ray spectroscopy of Procyon by Chandra and XMM - , 2022 .