Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials

We investigate the asymptotic zero distribution of Heine-Stieltjes polynomials – polynomial solutions of second order differential equations with complex polynomial coefficients. In the case when all zeros of the leading coefficients are all real, zeros of the Heine-Stieltjes polynomials were interpreted by Stieltjes as discrete distributions minimizing an energy functional. In a general complex situation one deals instead with a critical point of the energy. We introduce the notion of discrete and continuous critical measures (saddle points of the weighted logarithmic energy on the plane), and prove that a weak-* limit of a sequence of discrete critical measures is a continuous critical measure. Thus, the limit zero distributions of the Heine-Stieltjes polynomials are given by continuous critical measures. We give a detailed description of such measures, showing their connections with quadratic differentials. In doing that, we obtain some results on the global structure of rational quadratic differentials on the Riemann sphere that have an independent interest.The problem has a rich variety of connections with other fields of analysis; some of them are briefly mentioned in the paper.

[1]  E. Rakhmanov,et al.  ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .

[2]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[3]  F. Gesztesy,et al.  Local Spectral Properties of Reflectionless Jacobi, CMV, and Schr\ , 2008, 0803.3177.

[4]  Marco Bertola,et al.  Boutroux curves with external field: equilibrium measures without a variational problem , 2011 .

[5]  P. Miller,et al.  The Steepest Descent Method for Orthogonal Polynomials on the Real Line with Varying Weights , 2008, 0805.1980.

[6]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[7]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[8]  E. Rakhmanov,et al.  Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable , 1996 .

[9]  Herbert Stahl,et al.  Extremal domains associated with an analytic function I , 1985 .

[10]  Walter Van Assche,et al.  Lamé differential equations and electrostatics , 2000 .

[11]  A. Veselov,et al.  Lamé Equation, Quantum Euler Top and Elliptic Bernoulli Polynomials , 2005, Proceedings of the Edinburgh Mathematical Society.

[12]  R. Osserman DIRICHLET'S PRINCIPLE, CONFORMAL MAPPING AND MINIMAL SURFACES , 1979 .

[13]  Spectral inequalities for the quantum asymmetric top , 2009 .

[14]  E. Rakhmanov,et al.  EQUILIBRIUM MEASURE AND THE DISTRIBUTION OF ZEROS OF EXTREMAL POLYNOMIALS , 1986 .

[15]  Spyridon Kamvissis,et al.  Existence and Regularity for an Energy Maximization Problem in Two Dimensions , 2005 .

[16]  A. Kuijlaars,et al.  Non-Intersecting Squared Bessel Paths and Multiple Orthogonal Polynomials for Modified Bessel Weights , 2007, 0712.1333.

[17]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[18]  J. Jenkins Univalent functions and conformal mapping , 1958 .

[19]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[20]  Alexei Borodin Biorthogonal ensembles , 1998 .

[21]  C. David Levermore,et al.  The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .

[22]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[23]  F. Marcellán,et al.  Electrostatic models for zeros of polynomials: Old, new, and some open problems , 2005 .

[24]  A. Vasilʹev,et al.  Moduli of Families of Curves for Conformal and Quasiconformal Mappings , 2002 .

[25]  Maxime Bôcher The roots of polynomials which satisfy certain linear differential equations of the second order , 1898 .

[26]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[27]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[28]  Neyamat Zaheer On Stieltjes and Van Vleck polynomials , 1976 .

[29]  J. Szmigielski,et al.  The Cauchy Two-Matrix Model , 2008, 0804.0873.

[30]  Arno B.J. Kuijlaars,et al.  Large n Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit , 2006, math-ph/0602064.

[31]  K. Mclaughlin,et al.  Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model , 2001 .

[32]  W. Assche,et al.  Erratum to “Lamé differential equations and electrostatics” , 2003 .

[33]  Comment on "Existence and regularity for an energy maximization problem in two dimensions" †S. Kamvissis and E. A. Rakhmanov, J. Math. Phys. 46, 083505 "2005…‡ , 2009 .

[34]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[35]  G. M. Shah ON THE ZEROS OF VAN VLECK POLYNOMIALS , 1968 .

[36]  Hrushikesh Narhar Mhaskar,et al.  Extremal problems for polynomials with exponential weights , 1984 .

[37]  Marco Bertola,et al.  Boutroux curves with external field: equilibrium measures without a minimization problem , 2007, 0705.3062.

[38]  Arno B.J. Kuijlaars,et al.  Large n Limit of Gaussian Random Matrices with External Source, Part I , 2004 .

[39]  Hans Volkmer,et al.  Multiparameter eigenvalue problems and expansion theorems , 1988 .

[40]  M. Marden Geometry of Polynomials , 1970 .

[41]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[42]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[43]  Maurice Duits,et al.  A vector equilibrium problem for the two-matrix model in the quartic/quadratic case , 2011 .

[44]  Asymptotics of Recurrence Relation Coefficients, Hankel Determinant Ratios, and Root Products Associated with Laurent Polynomials Orthogonal with Respect to Varying Exponential Weights , 2006, math/0602202.

[45]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[46]  H. Volkmer Generalized ellipsoidal and sphero-conal harmonics. , 2006, math/0610718.

[47]  Andrei Martínez-Finkelshtein,et al.  Asymptotic Properties of Heine-Stieltjes and Van Vleck Polynomials , 2002, J. Approx. Theory.

[48]  T. Stieltjes,et al.  Sur certains polynômes , 1885 .

[49]  G. M. Shah On the zeros of Stieltjes and Van Vleck polynomials , 1970 .

[50]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[51]  E. B. Van Vleck On the polynomials of Stieltjes , 1898 .

[52]  Tanja Bergkvist,et al.  On polynomial eigenfunctions for a class of differential operators , 2002 .

[53]  R. Courant Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces , 1950 .

[54]  Kouichi Takemura,et al.  On Spectral Polynomials of the Heun Equation. II , 2008 .

[55]  A. Ronveaux,et al.  Heun's differential equations , 1995 .

[56]  Herbert Stahl,et al.  On the convergence of generalized Padé approximants , 1989 .

[57]  G. V. Kuzʹmina Moduli of families of curves and quadratic differentials , 1982 .

[58]  F. Alberto Grünbaum,et al.  Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials , 1998 .

[59]  Maurice Duits,et al.  Universality in the two‐matrix model: a Riemann‐Hilbert steepest‐descent analysis , 2008, 0807.4814.

[60]  A.B.J. Kuijlaars,et al.  Random matrices with external source and multiple orthogonal polynomials , 2003 .

[61]  Boris Z. Shapiro,et al.  Algebro‐geometric aspects of Heine–Stieltjes theory , 2008, J. Lond. Math. Soc..

[62]  M. Shiffman ON DIRICHLET'S PRINCIPLE , 1953 .

[63]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[64]  Zdravko Kurnik Dirichlet's principle , 2005 .

[65]  External Ellipsoidal Harmonics for the Dunkl-Laplacian ? , 2008, 0812.4365.

[66]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[67]  Boris Z. Shapiro,et al.  On spectral polynomials of the Heun equation. I , 2008, J. Approx. Theory.

[68]  Fritz Gesztesy,et al.  Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.

[69]  A. Aptekarev Sharp constants for rational approximations of analytic functions , 2002 .

[70]  F. Gesztesy,et al.  A Borg‐Type Theorem Associated with Orthogonal Polynomials on the Unit Circle , 2005, math/0501212.

[71]  J. Jost Compact Riemann Surfaces , 2002 .

[72]  Ramón A. Orive Rodríguez,et al.  Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.

[73]  P. Winternitz,et al.  Harmonics on hyperspheres, separation of variables and the bethe ansatz , 1995 .

[74]  The semiclassical density of states for the quantum asymmetric top , 2007, 0706.4127.

[75]  W. Craig The trace formula for Schrödinger operators on the line , 1989 .

[76]  Steven Delvaux,et al.  Random matrix model with external source and a constrained vector equilibrium problem , 2010, 1001.1238.

[77]  J Nuttall,et al.  Asymptotics of diagonal Hermite-Padé polynomials , 1984 .

[78]  Mourad E. H. Ismail,et al.  An electrostatics model for zeros of general orthogonal polynomials , 2000 .

[79]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[80]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[81]  Duality, Biorthogonal Polynomials¶and Multi-Matrix Models , 2001, nlin/0108049.

[82]  E. Rakhmanov,et al.  On the equilibrium problem for vector potentials , 1985 .

[83]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[84]  Interlacing and nonorthogonality of spectral polynomials for the Lamé operator , 2008 .

[85]  Neyamat Zaheer,et al.  Zeros of Stieltjes and Van Vleck polynomials and applications , 1985 .

[86]  A. Poltoratski,et al.  Uniqueness theorems for Cauchy integrals , 2007, 0704.0621.

[87]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[88]  Edward B. Saff,et al.  Constrained energy problems with applications to orthogonal polynomials of a discrete variable , 1997 .

[89]  The ∂ Steepest Descent Method and the Asymptotic Behavior of Polynomials Orthogonal on the Unit Circle with Fixed and Exponentially Varying Nonanalytic Weights , 2004, math/0406484.

[90]  Mahfooz Alam Zeros of Stieltjes and Van Vleck polynomials , 1979 .

[91]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[92]  J. Nuttall Asymptotics of generalized jacobi polynomials , 1986 .

[93]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[94]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[95]  Joaquim Ortega-Cerda,et al.  The Polya-Tchebotarov Problem , 2008, 0809.2483.