Development of high-entropy metallic glass matrix composites with enhanced compressive mechanical properties at elevated temperatures

[1]  Ruijuan Xiao,et al.  OsCo-based high-temperature bulk metallic glasses with robust mechanical properties , 2023, Scripta Materialia.

[2]  M. Ma,et al.  Mechanical properties and non-isothermal crystallization kinetics of novel Ti-based high-entropy bulk metallic glasses , 2023, Journal of Materials Research and Technology.

[3]  T. Kulik,et al.  Evaluation of phase stability and diffusion kinetics in novel BCC-structured high entropy alloys , 2022, Materials Research Letters.

[4]  Zhengwang Zhu,et al.  A strategy to design Ti-based in-situ bulk metallic glass composites containing controllable volume fraction and composition of the dendrite phase using conventional Titanium alloy Ti–6Al–4V , 2022, Journal of Materials Research and Technology.

[5]  D. Ponge,et al.  Machine learning–enabled high-entropy alloy discovery , 2022, Science.

[6]  Xin Tong,et al.  Design of BCC refractory multi-principal element alloys with superior mechanical properties , 2022, Materials Research Letters.

[7]  M. Nili-Ahmadabadi,et al.  Superplastic formability of the developed Zr40Hf10Ti5Al10Cu25Ni10 high entropy bulk metallic glass with enhanced thermal stability , 2021, Journal of Non-Crystalline Solids.

[8]  D. Ponge,et al.  Symbiotic crystal-glass alloys via dynamic chemical partitioning , 2021, Materials Today.

[9]  Haifeng Zhang,et al.  On low-temperature strength and tensile ductility of bulk metallic glass composites containing stable or shape memory β-Ti crystals , 2021, Acta Materialia.

[10]  J. Eckert,et al.  In situ TEM observation of phase transformation in bulk metallic glass composites , 2021 .

[11]  Jun Xu,et al.  Study on deformation behavior in supercooled liquid region of a Ti-based metallic glassy matrix composite by artificial neural network , 2020 .

[12]  C. Tasan,et al.  High entropy alloys: A focused review of mechanical properties and deformation mechanisms , 2020, Acta Materialia.

[13]  J. Qiao,et al.  Strong metallic glass: TiZrHfCuNiBe high entropy alloy , 2020 .

[14]  Liyuan Li,et al.  A new microscopic coordinated deformation model of Ti-based bulk metallic composites during tensile deformation , 2019, Scripta Materialia.

[15]  H. Y. Li,et al.  A semi-empirical model for predicting yielding in metallic glass matrix composites , 2019, Scripta Materialia.

[16]  J. Schroers,et al.  High-temperature bulk metallic glasses developed by combinatorial methods , 2019, Nature.

[17]  J. Pelletier,et al.  Enhanced compressive plasticity in a Cu-Zr-Al – Based metallic glass composite , 2019, Journal of Alloys and Compounds.

[18]  U. Ramamurty,et al.  Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites , 2019, Acta Materialia.

[19]  G. Dirras,et al.  Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys , 2018, Data in brief.

[20]  X. J. Liu,et al.  Unusual relation between glass-forming ability and thermal stability of high-entropy bulk metallic glasses , 2018, Materials Research Letters.

[21]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[22]  Jian Xu,et al.  (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening , 2018 .

[23]  Zhihua Wang,et al.  Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites , 2017, Scientific Reports.

[24]  Yao Yao,et al.  Mechanical properties of Ti 16.7 Zr 16.7 Hf 16.7 Cu 16.7 Ni 16.7 Be 16.7 high-entropy bulk metallic glass , 2016 .

[25]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[26]  Junwei Qiao,et al.  Metallic glass matrix composites , 2016 .

[27]  Yao Yao,et al.  Evaluation of thermal stability and isochronal crystallization kinetics in the Ti 40 Zr 25 Ni 8 Cu 9 Be 18 bulk metallic glass , 2016 .

[28]  Douglas C. Hofmann,et al.  Low‐Density High‐Strength Bulk Metallic Glasses and Their Composites: A Review , 2015 .

[29]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[30]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[31]  H. Ding,et al.  High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass , 2013 .

[32]  U. Ramamurty,et al.  On the microstructure–tensile property correlations in bulk metallic glass matrix composites with crystalline dendrites , 2012 .

[33]  P. Liaw,et al.  Tensile softening of metallic-glass-matrix composites in the supercooled liquid region , 2012 .

[34]  Douglas C. Hofmann,et al.  Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite , 2012 .

[35]  Nack J. Kim,et al.  Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites , 2011 .

[36]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[37]  E-Wen Huang,et al.  Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening , 2011 .

[38]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[39]  U. Ramamurty,et al.  The fracture toughness of bulk metallic glasses , 2010 .

[40]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[41]  Tao Zhang,et al.  Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses , 2006, cond-mat/0612185.

[42]  Tao Zhang,et al.  Formation and mechanical properties of (Ce–La–Pr–Nd)–Co–Al bulk glassy alloys with superior glass-forming ability , 2006 .

[43]  Jan Schroers,et al.  Ductile bulk metallic glass. , 2004, Physical review letters.

[44]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[45]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[46]  W. Johnson,et al.  Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures , 2003 .

[47]  Yat Li,et al.  Embrittlement of a bulk metallic glass due to low-temperature annealing , 2002 .

[48]  Hays,et al.  Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions , 2000, Physical review letters.

[49]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[50]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[51]  H.J. Yang,et al.  “Double-yielding” behavior and progressive β → α → twins transformation in a Ti-based metallic glass matrix composite , 2022, Scripta Materialia.

[52]  X. Ke,et al.  Beryllium-distribution in metallic glass matrix composite containing beryllium , 2017 .

[53]  Ludwig Schultz,et al.  Novel Ti-base nanostructure–dendrite composite with enhanced plasticity , 2003, Nature materials.

[54]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[55]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .