The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0

This report documents the GEOS-5 global atmospheric model and data assimilation system (DAS), including the versions 5.0.1, 5.1.0, and 5.2.0, which have been implemented in products distributed for use by various NASA instrument team algorithms and ultimately for the Modem Era Retrospective analysis for Research and Applications (MERRA). The DAS is the integration of the GEOS-5 atmospheric model with the Gridpoint Statistical Interpolation (GSI) Analysis, a joint analysis system developed by the NOAA/National Centers for Environmental Prediction and the NASA/Global Modeling and Assimilation Office. The primary performance drivers for the GEOS DAS are temperature and moisture fields suitable for the EOS instrument teams, wind fields for the transport studies of the stratospheric and tropospheric chemistry communities, and climate-quality analyses to support studies of the hydrological cycle through MERRA. The GEOS-5 atmospheric model has been approved for open source release and is available from: http://opensource.gsfc.nasa.gov/projects/GEOS-5/GEOS-5.php.

[1]  Randal D. Koster,et al.  Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model , 2005 .

[2]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[3]  S. Pawson,et al.  Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data , 2004 .

[4]  N. Livesey,et al.  Stratospheric transport using 6‐h‐averaged winds from a data assimilation system , 2007 .

[5]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[6]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[7]  U. Langematz An estimate of the impact of observed ozone losses on stratospheric temperature , 2000 .

[8]  Dennis C. Reuter,et al.  An accurate radiative transfer model for use in the direct physical inversion of HIRS2 and MSU Temperature Sounding Data , 1983 .

[9]  Fuzhong Weng,et al.  NOTES AND CORRESPONDENCE Advanced Doubling-Adding Method for Radiative Transfer in Planetary Atmospheres , 2006 .

[10]  Xin-Zhong Liang,et al.  A Thermal Infrared Radiation Parameterization for Atmospheric Studies , 2001 .

[11]  Cecelia DeLuca,et al.  Design and Implementation of Components in the Earth System Modeling Framework , 2005, Int. J. High Perform. Comput. Appl..

[12]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[13]  Mark Lawrence,et al.  The impact of cloud particle gravitational settling on soluble trace gas distributions , 1998 .

[14]  Leon D. Rotstayn,et al.  A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes , 1997 .

[15]  Hilding Sundqvist,et al.  A parameterization scheme for non-convective condensation including prediction of cloud water content , 1978 .

[16]  H. Treut,et al.  Sensitivity of the LMD General Circulation Model to Greenhouse Forcing Associated with Two Different Cloud Water Parameterizations , 1994 .

[17]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[18]  Steven Platnick,et al.  Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  X. Wu,et al.  Emissivity of rough sea surface for 8-13 num: modeling and verification. , 1997, Applied optics.

[20]  D. Mocko,et al.  Simulation of high latitude hydrological processes in the Torne-Kalix basin : PILPS phase 2(e) - 2: Comparison of model results with observations , 2003 .

[21]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[22]  Hui-Chun Liu,et al.  Ice polar stratospheric clouds detected from assimilation of Atmospheric Infrared Sounder data , 2007 .

[23]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[24]  D. Dee,et al.  Variational bias correction of radiance data in the ECMWF system , 2004 .

[25]  R. Eskridge,et al.  Unexplained Discontinuity in the U.S. Radiosonde Temperature Data. Part II: Stratosphere , 2003 .

[26]  N. Roberts,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances , 2003 .

[27]  John Derber,et al.  The use of TOVS level‐1b radiances in the NCEP SSI analysis system , 2000 .

[28]  Anthony D. Del Genio,et al.  A Prognostic Cloud Water Parameterization for Global Climate Models , 1996 .

[29]  Leopold Haimberger,et al.  Homogenization of Radiosonde Temperature Time Series Using Innovation Statistics , 2007 .

[30]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[31]  D. A. Merritt,et al.  An Automatic Profiler of the Temperature, Wind and Humidity in the Troposphere. , 1983 .

[32]  J. Logan,et al.  Consistency of time series and trends of stratospheric ozone as seen by ozonesonde, SAGE II, HALOE, and SBUV(/2) , 2007 .

[33]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[34]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[35]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[36]  Larry M. McMillin,et al.  Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles. , 1995, Applied optics.

[37]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[38]  C. Anne,et al.  Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation , 1999 .

[39]  Fuzhong Weng,et al.  A microwave land emissivity model , 2001 .

[40]  Siegfried Schubert,et al.  NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions , 2006 .

[41]  David A. Imy,et al.  A Description of the Initial Set of Analysis Products Available from the NEXRAD WSR-88D System , 1993 .

[42]  Rolando R. Garcia,et al.  'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere , 1994 .

[43]  R. Stolarski,et al.  Sensitivity of tracers and a stratospheric aircraft perturbation to two-dimensional model transport variations , 2001 .

[44]  Kozo Okamoto,et al.  Assimilation of SSM/I Radiances in the NCEP Global Data Assimilation System , 2006 .

[45]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .

[46]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[47]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[48]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[49]  Y. Sud,et al.  Microphysics of Clouds with the Relaxed Arakawa–Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE Phase III Data , 1999 .

[50]  James P. Verdin,et al.  A topological system for delineation and codification of the Earth's river basins , 1999 .

[51]  H. Pan,et al.  Global and Regional Moisture Analyses at NCEP , 2003 .

[52]  Julio T. Bacmeister,et al.  Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM , 2006 .

[53]  R. Koster,et al.  Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 3: Equivalent model representation and sensitivity experiments , 2003 .

[54]  Jennifer A. Logan,et al.  Ozone climatological profiles for satellite retrieval algorithms , 2007 .

[55]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[56]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[57]  Frederick H. Carr,et al.  A Prognostic Cloud Scheme for Operational NWP Models , 1997 .

[58]  Fuzhong Weng,et al.  Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager , 1997 .

[59]  Max J. Suarez,et al.  The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales , 2001 .

[60]  James M. Russell,et al.  Seasonal Cycles and QBO Variations in Stratospheric CH4 and H2O Observed in UARS HALOE Data , 1998 .

[61]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[62]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .

[63]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .