Chemoautotrophy at deep-sea vents : past, present, and future

[1]  A. Reysenbach,et al.  Microbial Ecology of Mid‐Ocean Ridges and Back‐Arc Basins , 2013 .

[2]  M. Schulte,et al.  Biogeochemical processes at hydrothermal vents : microbes and minerals, bioenergetics, and carbon fluxes , 2012 .

[3]  Thomas M. McCollom,et al.  Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types , 2011 .

[4]  Kenji Tanaka,et al.  Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales. , 2011, International journal of systematic and evolutionary microbiology.

[5]  S. Kravitz,et al.  Draft genome sequence of Caminibacter mediatlanticus strain TB-2T, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent , 2011, Standards in genomic sciences.

[6]  D. Prieur,et al.  Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. , 2011, FEMS microbiology ecology.

[7]  R. Amann,et al.  Hydrogen is an energy source for hydrothermal vent symbioses , 2011, Nature.

[8]  M. Hecker,et al.  Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont , 2011, Proteomics.

[9]  P. Girguis,et al.  Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents , 2011, PloS one.

[10]  P. Girguis,et al.  Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids , 2011 .

[11]  Kentaro Nakamura,et al.  Archaeal diversity and community development in deep-sea hydrothermal vents. , 2011, Current opinion in microbiology.

[12]  S. Yooseph,et al.  Going Deeper: Metagenome of a Hadopelagic Microbial Community , 2011, PloS one.

[13]  Manesh Shah,et al.  Environmental proteomics of microbial plankton in a highly productive coastal upwelling system , 2011, The ISME Journal.

[14]  G. Cody,et al.  Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions , 2011 .

[15]  A. Xu,et al.  Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries , 2011, The ISME Journal.

[16]  Michael Hügler,et al.  Pathways of Carbon and Energy Metabolism of the Epibiotic Community Associated with the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata , 2011, PloS one.

[17]  B. Engelen,et al.  Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. , 2010, International journal of systematic and evolutionary microbiology.

[18]  W. Seyfried,et al.  An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys , 2010, Geobiology.

[19]  J. Baross,et al.  Metagenomic Comparison of Two Thiomicrospira Lineages Inhabiting Contrasting Deep-Sea Hydrothermal Environments , 2010, PloS one.

[20]  Ken Takai,et al.  Electrical current generation across a black smoker chimney. , 2010, Angewandte Chemie.

[21]  Mirjam Perner,et al.  Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. , 2010, FEMS microbiology ecology.

[22]  E. Delong,et al.  Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea , 2010, Proceedings of the National Academy of Sciences.

[23]  K. Horikoshi,et al.  Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. , 2010, Environmental microbiology.

[24]  C. Vetriani,et al.  Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. , 2010, International journal of systematic and evolutionary microbiology.

[25]  David R Goodlett,et al.  Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction , 2010, The ISME Journal.

[26]  J. Baross,et al.  Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. , 2009, FEMS microbiology ecology.

[27]  Ines Thiele,et al.  Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima , 2009, Science.

[28]  J. Querellou,et al.  Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. , 2009, Environmental microbiology.

[29]  D. Prieur,et al.  Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. , 2009, International journal of systematic and evolutionary microbiology.

[30]  C. Vetriani,et al.  Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. , 2009, International journal of systematic and evolutionary microbiology.

[31]  E. Bonch‐Osmolovskaya,et al.  Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. , 2009, International journal of systematic and evolutionary microbiology.

[32]  Edward F. DeLong,et al.  The microbial ocean from genomes to biomes , 2009, Nature.

[33]  J. Eisen,et al.  Assembling the Marine Metagenome, One Cell at a Time , 2009, PloS one.

[34]  Jizhong Zhou,et al.  GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent , 2009, Proceedings of the National Academy of Sciences.

[35]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[36]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[37]  J. Eisen,et al.  Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola , 2009, PLoS genetics.

[38]  C. Vetriani,et al.  Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep‐sea hydrothermal vents , 2009 .

[39]  Rudolf Amann,et al.  A single-cell view on the ecophysiology of anaerobic phototrophic bacteria , 2008, Proceedings of the National Academy of Sciences.

[40]  Alison E. Murray,et al.  Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility , 2008, Proceedings of the National Academy of Sciences.

[41]  Satoshi Nakagawa,et al.  Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation , 2008, Proceedings of the National Academy of Sciences.

[42]  K. Takai,et al.  Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. , 2008, FEMS microbiology ecology.

[43]  Thomas E Hanson,et al.  Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. , 2008, International journal of systematic and evolutionary microbiology.

[44]  Yohey Suzuki,et al.  Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. , 2008, International journal of systematic and evolutionary microbiology.

[45]  Yohey Suzuki,et al.  Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough. , 2008, International journal of systematic and evolutionary microbiology.

[46]  Susan M. Huse,et al.  Microbial Population Structures in the Deep Marine Biosphere , 2007, Science.

[47]  R. Stepanauskas,et al.  Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time , 2007, Proceedings of the National Academy of Sciences.

[48]  D. Stahl,et al.  Metabolic modeling of a mutualistic microbial community , 2007, Molecular systems biology.

[49]  W. Seyfried,et al.  Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures , 2007, Extremophiles.

[50]  M. Hecker,et al.  Physiological Proteomics of the Uncultured Endosymbiont of Riftia pachyptila , 2007, Science.

[51]  B. Griffin,et al.  Growth Yields in Bacterial Denitrification and Nitrate Ammonification , 2007, Applied and Environmental Microbiology.

[52]  E. Stackebrandt,et al.  Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. , 2006, International journal of systematic and evolutionary microbiology.

[53]  Yohey Suzuki,et al.  Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emend , 2006, International journal of systematic and evolutionary microbiology.

[54]  B. Campbell,et al.  The versatile ε-proteobacteria: key players in sulphidic habitats , 2006, Nature Reviews Microbiology.

[55]  M. Sogin,et al.  Energy in the dark: Fuel for life in the deep ocean and beyond , 2006 .

[56]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[57]  Satoshi Nakagawa,et al.  Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the epsilon-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2005, International journal of systematic and evolutionary microbiology.

[58]  C. Vetriani,et al.  Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. , 2005, International journal of systematic and evolutionary microbiology.

[59]  C. Vetriani,et al.  Mercury Adaptation among Bacteria from a Deep-Sea Hydrothermal Vent , 2005, Applied and Environmental Microbiology.

[60]  Matthew R. Johnson,et al.  Population density‐dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima , 2004, Molecular microbiology.

[61]  K. Nealson,et al.  Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. , 2004, International journal of systematic and evolutionary microbiology.

[62]  K. Nealson,et al.  Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. , 2004, International journal of systematic and evolutionary microbiology.

[63]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[64]  E. Stackebrandt,et al.  Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. , 2003, International journal of systematic and evolutionary microbiology.

[65]  Y. Sako,et al.  Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. , 2003, International journal of systematic and evolutionary microbiology.

[66]  K. Nealson,et al.  Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2003, International journal of systematic and evolutionary microbiology.

[67]  J. Susini,et al.  Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. , 2003, Environmental microbiology.

[68]  S. Spring,et al.  Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. , 2003, International journal of systematic and evolutionary microbiology.

[69]  M. Zbinden,et al.  Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium , 2003, Extremophiles.

[70]  Y. Sako,et al.  Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. , 2003, International journal of systematic and evolutionary microbiology.

[71]  J. Baross,et al.  Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.

[72]  J. Querellou,et al.  Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[73]  E. Stackebrandt,et al.  Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[74]  B. Simoneit,et al.  Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. , 2002, International journal of systematic and evolutionary microbiology.

[75]  K. Horikoshi,et al.  Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. , 2002, International journal of systematic and evolutionary microbiology.

[76]  Everett Shock,et al.  Merging Genomes with Geochemistry in Hydrothermal Ecosystems , 2002, Science.

[77]  Deborah S. Kelley,et al.  Volcanoes, Fluids, and Life at Mid-Ocean Ridge Spreading Centers , 2002 .

[78]  D. Prieur,et al.  Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. , 2002, International journal of systematic and evolutionary microbiology.

[79]  B. Campbell,et al.  Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched fromAlvinella pompejana and Deep-Sea Hydrothermal Vents , 2001, Applied and Environmental Microbiology.

[80]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[81]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[82]  C. Wirsen,et al.  Rapid Microbial Production of Filamentous Sulfur Mats at Hydrothermal Vents , 1999, Applied and Environmental Microbiology.

[83]  U. Sleytr,et al.  Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. , 1998, International journal of systematic bacteriology.

[84]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[85]  K. Stetter,et al.  Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers , 1997 .

[86]  Robert Huber,et al.  Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C , 1991, Archives of Microbiology.

[87]  J. H. Tuttle,et al.  Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site , 1986 .

[88]  D. Nelson,et al.  Thiomicrospira crunogena sp. nov., a Colorless, Sulfur-Oxidizing Bacterium from a Deep-Sea Hydrothermal Vent† , 1985 .

[89]  M. Mottl,et al.  Geomicrobiology of Deep-Sea Hydrothermal Vents , 1985, Science.

[90]  J. H. Tuttle,et al.  Microbial activities in the emitted hydrothermal waters of the Galápagos rift vents , 1983 .

[91]  H. Jannasch,et al.  Morphological Survey of Microbial Mats Near Deep-Sea Thermal Vents , 1981, Applied and environmental microbiology.

[92]  Holger W. Jannasch,et al.  Chemosynthetic Primary Production at East Pacific Sea Floor Spreading Centers , 1979 .

[93]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[94]  Peter Lonsdale,et al.  Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers , 1977 .

[95]  G. D. Floodgate Deep Sea Microbiology , 1963, Nature.

[96]  H. Lester,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011 .

[97]  S. Sievert,et al.  Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. , 2011, Annual review of marine science.

[98]  J. Gilbert,et al.  Microbial metagenomics: beyond the genome. , 2011, Annual review of marine science.

[99]  J. Huber,et al.  Microbial provinces in the subseafloor. , 2010, Annual review of marine science.

[100]  D. Prieur,et al.  Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. , 2010, International journal of systematic and evolutionary microbiology.

[101]  N. Bris,et al.  Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps , 2008 .

[102]  Yohey Suzuki,et al.  Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. , 2005, International journal of systematic and evolutionary microbiology.

[103]  S. Spring,et al.  Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. , 2004, International journal of systematic and evolutionary microbiology.

[104]  C. Vetriani,et al.  Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. , 2004, International journal of systematic and evolutionary microbiology.

[105]  E. Stackebrandt,et al.  Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. , 2004, International journal of systematic and evolutionary microbiology.

[106]  K. Nealson,et al.  Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. , 2004, International journal of systematic and evolutionary microbiology.

[107]  N. Pace,et al.  Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin , 2004, Archives of Microbiology.

[108]  K. Nealson,et al.  Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields , 2003 .

[109]  M. Lilley,et al.  Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50 N, East Pacific Rise) , 1998 .

[110]  D. Hafenbradl,et al.  Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. , 1997, Extremophiles : life under extreme conditions.

[111]  K. V. Damm,et al.  SEAFLOOR HYDROTHERMAL ACTIVITY: BLACK SMOKER CHEMISTRY AND CHIMNEYS , 1990 .