Consistency in preference modelling

Coherence in preference modelling has been introduced in standard decision making frameworks, taking many different formulations in each context, as a need in order to assure consistent decision making procedures. In the classical crisp context, preferences use to be assumed to be transitive in order to assure consistent behavior. In the fuzzy framework, a standard assumption is the condition of max-min transitivity; alternatively, consistency has been understood by Cutello-Montero as a rationality measure, therefore allowing degrees of performance. In this paper we stress that, neither in the crisp nor in the fuzzy case, consistency should not be necessarily associated with underlying linear orders.

[1]  Javier Montero,et al.  Some problems on the definition of fuzzy preference relations , 1986 .

[2]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[3]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[4]  José Luis García-Lapresta,et al.  Individual-valued preferences and their aggregation: consistency analysis in a real case , 2005, Fuzzy Sets Syst..

[5]  Carlos Rodríguez-Palmero,et al.  Some algebraic characterizations of preference structures , 2004 .

[6]  José L. Verdegay,et al.  On The Definition Of Coherence Measure For Fuzzy Sets , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  Javier Montero,et al.  Classifiers and decision makers. , 2004 .

[8]  J. Goguen L-fuzzy sets , 1967 .

[9]  J. Montero,et al.  A general model for deriving preference structures from data , 1997 .

[10]  H. Nurmi Approaches to collective decision making with fuzzy preference relations , 1981 .

[11]  Vincenzo Cutello,et al.  Crisp dimension theory and valued preference relations , 2004, Int. J. Gen. Syst..

[12]  S. Ovchinnikov STRUCTURE OF FUZZY BINARY RELATIONS , 1981 .

[13]  P. Fishburn Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .

[14]  Vincenzo Cutello,et al.  Equivalence and compositions of fuzzy rationality measures , 1997, Fuzzy Sets Syst..

[15]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[16]  C. R. Barrett,et al.  On the structure of fuzzy social welfare functions , 1986 .

[17]  P. Fishburn The Theory Of Social Choice , 1973 .

[18]  Kazuo Nakamura,et al.  On the Nature of Intransitivity in Human Preferential Judgments , 1992 .

[19]  Vincenzo Cutello,et al.  Recursive connective rules , 1999, Int. J. Intell. Syst..

[20]  J. Fodor,et al.  Valued preference structures , 1994 .

[21]  T. Tanino Fuzzy preference orderings in group decision making , 1984 .

[22]  José Luis García-Lapresta,et al.  An empirical analysis of transitivity with four scaled preferential judgment modalities , 2003 .

[23]  Alexis Tsoukiàs,et al.  Preference Modelling , 2004, Preferences.

[24]  F. J. Montero Social welfare functions in a fuzzy environment , 1987 .

[25]  Prasanta K. Pattanaik,et al.  Voting and collective choice : some aspects of the theory of group decision-making , 1973 .

[26]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[27]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[28]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[29]  Zbigniew Switalski,et al.  General transitivity conditions for fuzzy reciprocal preference matrices , 2003, Fuzzy Sets Syst..

[30]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[31]  J. Montero,et al.  Fuzzy rationality measures , 1994 .

[32]  Javier Montero De Juan Arrow`s theorem under fuzzy rationality , 1987 .

[33]  J. Bezdek,et al.  A fuzzy relation space for group decision theory , 1978 .

[34]  Francisco Herrera,et al.  Some issues on consistency of fuzzy preference relations , 2004, Eur. J. Oper. Res..