Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

[1]  Sang-Hoon Yoo,et al.  Platinum‐Coated, Nanoporous Gold Nanorod Arrays: Synthesis and Characterization , 2007 .

[2]  D. Goodman,et al.  Catalytically active gold: The role of cluster morphology , 2005 .

[3]  Peter C. Searson,et al.  Deposition of Au x Ag1 − x / Au y Ag1 − y Multilayers and Multisegment Nanowires , 2003 .

[4]  Lifeng Liu,et al.  Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon nanotubes array , 2006 .

[5]  Thomas R Huser,et al.  Surface-enhanced Raman scattering on nanoporous Au , 2006 .

[6]  H. Gleiter,et al.  Charge-Induced Reversible Strain in a Metal , 2003, Science.

[7]  David Farrusseng,et al.  Porous ceramic membranes for catalytic reactors — overview and new ideas , 2001 .

[8]  P. Searson,et al.  Fabrication of nanoporous gold nanowires , 2002 .

[9]  J. Erlebacher,et al.  Nanoporous metals with controlled multimodal pore size distribution. , 2003, Journal of the American Chemical Society.

[10]  Charles R. Martin,et al.  Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit , 1997 .

[11]  P. Searson,et al.  Synthesis and Characterization of Nanoporous Gold Nanowires , 2003 .

[12]  M. Bruening,et al.  Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. , 2006, Nano letters.

[13]  J. Erlebacher An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior , 2004 .

[14]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[15]  P. Searson,et al.  Single nanoporous gold nanowire sensors. , 2006, The journal of physical chemistry. B.

[16]  C. Wagner,et al.  Electrolytic Dissolution of Binary Alloys Containing a Noble Metal , 1967 .

[17]  C. Mandenius,et al.  Porous gold surfaces for biosensor applications. , 2000, Biosensors & bioelectronics.

[18]  J. Erlebacher,et al.  Volume change during the formation of nanoporous gold by dealloying. , 2006, Physical review letters.

[19]  Geoffrey B. Smith,et al.  Electrochemical capacitance of mesoporous gold , 2005 .

[20]  D. Kramer,et al.  Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers , 2004 .

[21]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[22]  Y. Takano,et al.  Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium , 2000 .

[23]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[24]  Marco Musiani,et al.  Preparation and Characterization of Gold Nanostructures of Controlled Dimension by Electrochemical Techniques , 2007 .

[25]  Kornelius Nielsch,et al.  A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. , 2005, Angewandte Chemie.

[26]  M. Bäumer,et al.  Gold catalysts: nanoporous gold foams. , 2006, Angewandte Chemie.