Cryo-EM Structure of the Exocyst Complex

[1]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[2]  A. Picco,et al.  The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis , 2017, Cell.

[3]  Wei Guo,et al.  Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion , 2017, Nature Communications.

[4]  S. Fukai,et al.  Crystal structure of Sec10, a subunit of the exocyst complex , 2017, Scientific Reports.

[5]  Chao Liu,et al.  Modeling Protein Excited-state Structures from “Over-length” Chemical Cross-links* , 2016, The Journal of Biological Chemistry.

[6]  Andrei N. Lupas,et al.  An endosomal tether undergoes an entropic collapse to bring vesicles together , 2016, Nature.

[7]  Liang Tang,et al.  An algorithm for estimation and correction of anisotropic magnification distortion of cryo-EM images without need of pre-calibration. , 2016, Journal of structural biology.

[8]  T. Walz,et al.  CATCHR and HOPS-CORVET tethering complexes share a similar architecture , 2016, Nature Structural &Molecular Biology.

[9]  M. Herlyn,et al.  Oncogenic BRAF-Mediated Melanoma Cell Invasion. , 2016, Cell reports.

[10]  Si-Min He,et al.  Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers. , 2016, Analytical chemistry.

[11]  Mark C. Field,et al.  Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex , 2015, Nature Structural &Molecular Biology.

[12]  Zhenbiao Yang,et al.  Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis , 2015, Proceedings of the National Academy of Sciences.

[13]  N. Grigorieff,et al.  Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. , 2015, Journal of structural biology.

[14]  David A Agard,et al.  Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. , 2015, Journal of structural biology.

[15]  Wei Guo,et al.  The Exocyst at a Glance , 2015, Journal of Cell Science.

[16]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[17]  R. Aebersold,et al.  Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex , 2014, Cell.

[18]  Wei Guo,et al.  The role of Sec3p in secretory vesicle targeting and exocyst complex assembly , 2014, Molecular biology of the cell.

[19]  R. Aebersold,et al.  Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex , 2014, Cell.

[20]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[21]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[22]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[23]  W. Guo,et al.  Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth , 2013, The Journal of cell biology.

[24]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[25]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[26]  R. Aebersold,et al.  Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry , 2012, Science.

[27]  D. Owen,et al.  Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. , 2012, Current opinion in cell biology.

[28]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[29]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[30]  Margaret R. Heider,et al.  Exorcising the Exocyst Complex , 2012, Traffic.

[31]  Wei Guo,et al.  ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. , 2012, Developmental cell.

[32]  Hongwei Wang,et al.  Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. , 2011, Journal of visualized experiments : JoVE.

[33]  C. Bröcker,et al.  Multisubunit Tethering Complexes and Their Role in Membrane Fusion , 2010, Current Biology.

[34]  T. Walz,et al.  Molecular organization of the COG vesicle tethering complex , 2010, Nature Structural &Molecular Biology.

[35]  F. Hughson,et al.  Tethering factors as organizers of intracellular vesicular traffic. , 2010, Annual review of cell and developmental biology.

[36]  R. Dominguez,et al.  Structure-Function Study of the N-terminal Domain of Exocyst Subunit Sec3* , 2010, The Journal of Biological Chemistry.

[37]  A. Nakano,et al.  Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3 , 2010, Nature Structural &Molecular Biology.

[38]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[39]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[40]  Wei Guo,et al.  The exocyst complex in polarized exocytosis. , 2004, International review of cytology.

[41]  D. Devos,et al.  Conservation of Helical Bundle Structure between the Exocyst Subunits , 2009, PloS one.

[42]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[43]  Jian Zhang,et al.  Membrane association and functional regulation of Sec3 by phospholipids and Cdc42 , 2008, The Journal of cell biology.

[44]  Wei Guo,et al.  Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. , 2007, Molecular biology of the cell.

[45]  Jian Zhang,et al.  Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane , 2007, The EMBO journal.

[46]  Zhaohui Xu,et al.  The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. , 2007, Journal of molecular biology.

[47]  Peter Novick,et al.  The exocyst defrocked, a framework of rods revealed , 2006, Nature Structural &Molecular Biology.

[48]  D. Brewer,et al.  The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles , 2006, Nature Structural &Molecular Biology.

[49]  A. West,et al.  Crystal structure of the S.cerevisiae exocyst component Exo70p. , 2005, Journal of molecular biology.

[50]  Sunil Q. Mehta,et al.  Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo , 2005, Nature Structural &Molecular Biology.

[51]  Axel T Brunger,et al.  Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase , 2005, The EMBO journal.

[52]  P. Novick,et al.  Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p , 2004, The Journal of cell biology.

[53]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[54]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[55]  M. White,et al.  Ral GTPases Regulate Exocyst Assembly through Dual Subunit Interactions* , 2003, Journal of Biological Chemistry.

[56]  Axel T Brunger,et al.  Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex , 2003, The EMBO journal.

[57]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[58]  S. Munro,et al.  Vesicle tethering complexes in membrane traffic. , 2002, Journal of cell science.

[59]  Wei Guo,et al.  Ras family therapy: Rab, Rho and Ral talk to the exocyst. , 2002, Trends in cell biology.

[60]  J. Lipschutz,et al.  Exocytosis: The Many Masters of the Exocyst , 2002, Current Biology.

[61]  S. Munro,et al.  The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. , 2001, Developmental cell.

[62]  Wei Guo,et al.  Spatial regulation of the exocyst complex by Rho1 GTPase , 2001, Nature Cell Biology.

[63]  P. Novick,et al.  Protein complexes in transport vesicle targeting. , 2000, Trends in cell biology.

[64]  S. Pfeffer Transport-vesicle targeting: tethers before SNAREs , 1999, Nature Cell Biology.

[65]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[66]  R. Scheller,et al.  Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. , 1999, Trends in cell biology.

[67]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[68]  Peter Novick,et al.  Sec3p Is a Spatial Landmark for Polarized Secretion in Budding Yeast , 1998, Cell.

[69]  P. Novick,et al.  The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. , 1996, The EMBO journal.

[70]  P. Novick,et al.  Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae , 1995, The Journal of cell biology.

[71]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[72]  E. Sztul,et al.  Role of tethering factors in secretory membrane traffic. , 2006, American journal of physiology. Cell physiology.

[73]  P. Novick,et al.  The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif , 2005, Nature Structural &Molecular Biology.

[74]  Sunil Q. Mehta,et al.  Sec 15 interacts with Rab 11 via a novel domain and affects Rab 11 localization in vivo , 2005 .

[75]  A. Iwamatsu,et al.  The exocyst complex binds the small GTPase RalA to mediate filopodia formation , 2002, Nature Cell Biology.

[76]  C. Rossé,et al.  The exocyst is a Ral effector complex , 2002, Nature Cell Biology.