Redundant arithmetic, algorithms and implementations

Performance in many very-large-scale-integrated (VLSI) systems such as digital signal processing (DSP) chips, is predominantly determined by the speed of arithmetic modules like adders and multipliers. Even though redundant arithmetic algorithms produce significant improvements in performance through the elimination of carry propagation, efficient circuit implementations of these algorithms have been traditionally difficult to obtain. This work presents a survey of circuit implementations of redundant arithmetic algorithms. The described implementations are divided into three main groups: (1) conventional binary logic circuits, which encode the multivalued digits of redundant arithmetic into two or more binary digital signals; (2) current-mode multiple-valued logic circuits, which directly represent multivalued redundant digits using non-binary digital current signals; and (3) heterostructure and quantum electronic circuits, intended for very compact designs capable of operating at extremely high speeds. For each of the circuits, the operating principle is described and the main advantages and disadvantages of the approach are discussed and compared.

[1]  P. R. Smith,et al.  Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic , 1989 .

[2]  M. Nagamatsu,et al.  A 10 ns 54*54 b parallel structured full array multiplier with 0.5 mu m CMOS technology , 1991 .

[3]  Shoji Kawahito,et al.  VLSI-Oriented Multiple-Valued Current-Mode Arithmetic Circuits Using Redundant Number Representations (Special Issue on Multiple-Valued Integrated Circuits) , 1993 .

[4]  Hiroshi Makino,et al.  A 8.8-ns 54/spl times/54-bit multiplier using new redundant binary architecture , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.

[5]  S. Kawahito,et al.  VLSI-oriented bi-directional current-mode arithmetic circuits based on the Radix-4 signed-digit number system , 1986 .

[6]  Michitaka Kameyama,et al.  Multiple-valued arithmetic integrated circuits based on 1.5 V-supply dual-rail source-coupled logic , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[7]  Pinaki Mazumder,et al.  Compact signed-digit adder using multiple-valued logic , 1997, Proceedings Seventeenth Conference on Advanced Research in VLSI.

[8]  Andrew D. Booth,et al.  A SIGNED BINARY MULTIPLICATION TECHNIQUE , 1951 .

[9]  M. Kameyama,et al.  Design of highly parallel residue arithmetic circuits based on multiple-valued bidirectional current-mode MOS technology , 1988, [1988] Proceedings. The Eighteenth International Symposium on Multiple-Valued Logic.

[10]  H. C. Lin,et al.  Resonant tunneling diodes for multi-valued digital applications , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[11]  Shoji Kawahito,et al.  A multiplier chip with multiple-valued bidirectional current-mode logic circuits , 1988, Computer.

[12]  A. Jain,et al.  CMOS multiple-valued logic design. I. Circuit implementation , 1993 .

[13]  Lutz J. Micheel Heterojunction bipolar technology for emitter-coupled multiple-valued logic in gigahertz adders and multipliers , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[14]  Jean Vuillemin,et al.  A very fast multiplication algorithm for VLSI implementation , 1983, Integr..

[15]  Michitaka Kameyama,et al.  Modular design of multiple-valued arithmetic VLSI system using signed-digit number system , 1990, Proceedings of the Twentieth International Symposium on Multiple-Valued Logic.

[16]  Michitaka Kameyama,et al.  Multiple - valued programmable logic array based on a resonant - tunneling diode model , 1993 .

[17]  Keivan Navi,et al.  Algorithms and multi-valued circuits for the multioperand addition in the binary stored-carry number system , 1993, Proceedings of IEEE 11th Symposium on Computer Arithmetic.

[18]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[19]  Edward J. McCluskey,et al.  Multivalued Integrated Injection Logic , 1977, IEEE Transactions on Computers.

[20]  N. Takagi,et al.  A high-speed multiplier using a redundant binary adder tree , 1987 .

[21]  Christopher S. Wallace,et al.  A Suggestion for a Fast Multiplier , 1964, IEEE Trans. Electron. Comput..

[22]  C. Chun,et al.  Thin film pseudomorphic AlAs/In/sub 0.53/Ga/sub 0.47/As/InAs resonant tunnelling diodes integrated onto Si substrates , 1996, IEEE Electron Device Letters.

[23]  Michitaka Kameyama,et al.  Residue arithmetic based multiple-valued VLSI image processor , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[24]  Takashi Taniguchi,et al.  High Speed MOS Multiplier and Divider Using Redundant Binary Representation and Their Implementation in a Microprocessor (Special Issue on Multiple-Valued Integrated Circuits) , 1993 .

[25]  G. Goto,et al.  A 54*54-b regularly structured tree multiplier , 1992 .

[26]  Lutz J. Micheel,et al.  Multiple-valued logic computation circuits using micro- and nanoelectronic devices , 1993, [1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic.

[27]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[28]  Michitaka Kameyama,et al.  A 1.5 V-supply 200 MHz pipelined multiplier using multiple-valued current-mode MOS differential logic circuits , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[29]  Lutz J. Micheel,et al.  Interband RTDs with nanoelectronic HBT-LED structures for multiple-valued computation , 1996, Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96).

[30]  T. Noguchi,et al.  A 15-ns 32*32-b CMOS multiplier with an improved parallel structure , 1990 .

[31]  Hiroto Yasuura,et al.  High-Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree , 1985, IEEE Transactions on Computers.

[32]  Joy Laskar,et al.  Tunneling Diodes Integrated onto Si Substrates , 1996 .

[33]  F. Schaffler,et al.  Operating CMOS after a Si-MBE process: a precondition for future three-dimensional circuits , 1990, IEEE Electron Device Letters.

[34]  Michitaka Kameyama,et al.  A 32 × 32 BIT multiplier using multiple-valued MOS current-mode circuits , 1987, 1987 Symposium on VLSI Circuits.

[35]  Michitaka Kameyama,et al.  Highly parallel residue arithmetic chip based on multiple-valued bidirectional current-mode logic , 1989 .

[36]  Keivan Navi,et al.  CML current mode full adders for 2.5-V power supply , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[37]  D. Schmitt-Landsiedel,et al.  A Pipelined 330 MHz Multiplier , 1985, ESSCIRC '85: 11th European Solid-State Circuits Conference.

[38]  A. Avizeinis,et al.  Signed Digit Number Representations for Fast Parallel Arithmetic , 1961 .

[39]  Keivan Navi,et al.  A basis for the comparison of binary and m-valued current mode circuits: the multioperand addition with redundant number systems , 1993, [1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic.

[40]  Mark Horowitz,et al.  SPIM: a pipelined 64*64-bit iterative multiplier , 1989 .

[41]  Takao Waho Resonant tunneling transistor and its application to multiple-valued logic circuits , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[42]  A. Seabaugh,et al.  Nine-state resonant tunneling diode memory , 1992, IEEE Electron Device Letters.

[43]  K. Mashiko,et al.  An 8.8-ns 54/spl times/54-bit multiplier with high speed redundant binary architecture , 1996 .

[44]  Masakazu Shoji,et al.  High-Speed Digital Circuits , 1996 .

[45]  David W. Matula,et al.  Redundant binary Booth recoding , 1995, Proceedings of the 12th Symposium on Computer Arithmetic.

[46]  K. W. Current,et al.  A Quaternary Logic Encoder-Decoder Circuit Design Using CMOS, , 1983 .

[47]  Shoji Kawahito,et al.  Parallel hardware algorithms with redundant number representations for multiple-valued arithmetic VLSI , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[48]  Shoji Kawahito,et al.  Multiple-valued current-mode arithmetic circuits based on redundant positive-digit number representations , 1991, [1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic.

[49]  Michitaka Kameyama,et al.  Multiple-valued current-mode MOS integrated circuits based on dual-rail source-coupled logic , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[50]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[51]  J.-F. Luy,et al.  Si/SiGe resonant tunnelling devices separated by surrounding polysilicon , 1989 .

[52]  Behrooz Parhami,et al.  Generalized Signed-Digit Number Systems: A Unifying Framework for Redundant Number Representations , 1990, IEEE Trans. Computers.

[53]  P.R. Gray,et al.  A new high-voltage analog-compatible I/sup 2/L process , 1978, IEEE Journal of Solid-State Circuits.

[54]  Michitaka Kameyama,et al.  Multiple-valued radix-2 signed-digit arithmetic circuits for high-performance VLSI systems , 1990 .