Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A beta-lactamases.

Class A beta-lactamases represent a family of well studied enzymes. They are responsible for many antibiotic resistance phenomena and thus for numerous failures in clinical chemotherapy. Despite the facts that five structures are known at high resolution and that detailed analyses of enzymes modified by site-directed mutagenesis have been performed, their exact catalytic mechanism remains controversial. This review attempts to summarize and to discuss the many available data.

[1]  J M Ghuysen,et al.  Streptomyces albus G serine beta-lactamase. Probing of the catalytic mechanism via molecular modelling of mutant enzymes. , 1992, The Biochemical journal.

[2]  S. B. Singer,et al.  Biochemical characteristics of extended broad spectrum beta-lactamases. , 1989, Infection.

[3]  S. G. Waley,et al.  Penicillinase active sites: Labelling of serine‐44 in β‐lactamase I by 6β‐bromopenicillanic acid , 1979 .

[4]  G. Paul,et al.  Clinical isolates of Escherichia coli producing TRI beta-lactamases: novel TEM-enzymes conferring resistance to beta-lactamase inhibitors. , 1992, Journal of Antimicrobial Chemotherapy.

[5]  L. Gutmann,et al.  Nucleotide sequence of the SHV-5 beta-lactamase gene of a Klebsiella pneumoniae plasmid , 1990, Antimicrobial Agents and Chemotherapy.

[6]  J M Ghuysen,et al.  A standard numbering scheme for the class A beta-lactamases. , 1991, The Biochemical journal.

[7]  S. G. Waley ß-Lactamase: mechanism of action , 1992 .

[8]  F. Jacob-Dubuisson,et al.  Arginine 220 is a critical residue for the catalytic mechanism of the Streptomyces albus G beta-lactamase. , 1991, Protein engineering.

[9]  Spratt Bg The mechanism of action of penicillin. , 1978 .

[10]  C. J. Thomson,et al.  TRC-1: emergence of a clavulanic acid-resistant TEM beta-lactamase in a clinical strain. , 1992, FEMS microbiology letters.

[11]  J. Frère,et al.  Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. , 1994, The Biochemical journal.

[12]  R. Labia,et al.  Single amino acid substitution between SHV‐1 β‐lactamase and cefotaxime‐hydrolyzing SHV‐2 enzyme , 1988, FEBS letters.

[13]  N. J. Layland,et al.  The roles of the carboxy group in β-lactam antibiotics and lysine 234 in β-lactamase I , 1993 .

[14]  H. Matsuzawa,et al.  Site-directed mutants, at position 166, of RTEM-1 beta-lactamase that form a stable acyl-enzyme intermediate with penicillin. , 1991, The Journal of biological chemistry.

[15]  J. Frère,et al.  On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. , 1986, Science.

[16]  M. Page,et al.  The Chemistry of β-lactams , 1992 .

[17]  J. Knowles Penicillin resistance: the chemistry of .beta.-lactamase inhibition , 1985 .

[18]  G. Jacoby,et al.  Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases , 1990, Antimicrobial Agents and Chemotherapy.

[19]  U. Schwarz,et al.  Analysis of penicillin-binding sites with a micro method — The binding site of PBP 5 from Escherichia coli , 1984 .

[20]  J M Ghuysen,et al.  Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins , 1991, Antimicrobial Agents and Chemotherapy.

[21]  S. G. Waley,et al.  Kinetic characterization of the acyl-enzyme mechanism for beta-lactamase I. , 1988, The Biochemical journal.

[22]  J. Knowles,et al.  beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. , 1980, Biochemistry.

[23]  J. Frère,et al.  The penicillin-binding site in the exocellular DD-carboxypeptidase-transpeptidase of Actinomadura R39. , 1981, The Biochemical journal.

[24]  T. Smith,et al.  Structural basis for the inactivation of the P54 mutant of beta-lactamase from Staphylococcus aureus PC1. , 1991, Biochemistry.

[25]  J. Frère,et al.  Interactions between active-site serine beta-lactamases and so-called beta-lactamase-stable antibiotics. Kinetic and molecular modelling studies. , 1993, European journal of biochemistry.

[26]  T J Dougherty,et al.  Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. , 1991, Biochemistry.

[27]  S. Mobashery,et al.  Critical hydrogen bonding by serine 235 for cephalosporinase activity of TEM-1 beta-lactamase , 1993, Antimicrobial Agents and Chemotherapy.

[28]  J. Frère,et al.  Characterization of a beta-lactamase produced in Mycobacterium fortuitum D316. , 1990, The Biochemical journal.

[29]  J Moult,et al.  Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. , 1987, Science.

[30]  J. Frère,et al.  The mutation Lys234His yields a class A beta-lactamase with a novel pH-dependence. , 1991, The Biochemical journal.

[31]  J M Masson,et al.  Crystal structure of Escherichia coli TEM1 β‐lactamase at 1.8 Å resolution , 1993, Proteins.

[32]  P. Nordmann,et al.  Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli , 1993, Antimicrobial Agents and Chemotherapy.

[33]  D. Phillips,et al.  Tertiary structural similarity between a class A β-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase , 1986, Nature.

[34]  R. Labia,et al.  Complete amino acid sequence of p453-plasmid-mediated PIT-2 beta-lactamase (SHV-1). , 1988, The Biochemical journal.

[35]  J. Frère,et al.  Active-site serine mutants of the Streptomyces albus G beta-lactamase. , 1991, The Biochemical journal.

[36]  J. Frère,et al.  A comparative study of class-D beta-lactamases. , 1993, The Biochemical journal.

[37]  S. Mobashery,et al.  Facilitation of the .DELTA.2 .fwdarw. .DELTA.1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine-244 of class A .beta.-lactamases during the course of turnover , 1992 .

[38]  W. DeGrado,et al.  Purification and properties of thiol beta-lactamase. A mutant of pBR322 beta-lactamase in which the active site serine has been replaced with cysteine. , 1984, The Journal of biological chemistry.

[39]  J. Frère,et al.  The diversity of the catalytic properties of class A beta-lactamases. , 1990, The Biochemical journal.

[40]  S. Mobashery,et al.  Elucidation of the role of arginine-244 in the turnover processes of class A beta-lactamases. , 1992, Biochemistry.

[41]  A. Huletsky,et al.  Nucleotide sequence and phylogeny of SHV-2 beta-lactamase , 1990, Antimicrobial Agents and Chemotherapy.

[42]  O. Herzberg,et al.  Refined crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.0 A resolution. , 1991, Journal of molecular biology.

[43]  Henry Y. Wang,et al.  Protein engineering of penicillinase as affinity ligands for bioprocessing , 1989 .

[44]  D. Botstein,et al.  Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase , 1992, Journal of bacteriology.

[45]  J. Frère,et al.  Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  I. Sigal,et al.  Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Samama,et al.  Site-directed mutagenesis of beta-lactamase TEM-1. Investigating the potential role of specific residues on the activity of Pseudomonas-specific enzymes. , 1993, European journal of biochemistry.

[48]  A. Fink,et al.  A catalytically-impaired class A beta-lactamase: 2 A crystal structure and kinetics of the Bacillus licheniformis E166A mutant. , 1993, Protein engineering.

[49]  J. Strominger,et al.  The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. , 1980, The Journal of biological chemistry.

[50]  A. Huletsky,et al.  Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type beta-lactamases probed by site-directed mutagenesis and three-dimensional modeling. , 1993, The Journal of biological chemistry.

[51]  J. Masson,et al.  Site-directed mutagenesis on TEM-1 ß-lactamase: role of Glul66 in catalysis and substrate binding , 1991 .

[52]  J. Samama,et al.  Site-directed mutagenesis at the active site of Escherichia coli TEM-1 beta-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. , 1992, The Journal of biological chemistry.

[53]  P. Schimmel,et al.  Evidence for a unique first position codon-anticodon mismatch in vivo. , 1988, Journal of molecular biology.

[54]  Eric M. Billings,et al.  Inactivation of class A β-lactamases by clavulanic acid : the role of arginine-244 in a proposed nonconcerted sequence of events , 1993 .

[55]  G. Jacoby,et al.  More extended-spectrum beta-lactamases , 1991, Antimicrobial Agents and Chemotherapy.

[56]  J. Frère,et al.  Engineering a novel β-Iactamase by a single point mutation , 1990 .

[57]  J. Frère,et al.  β‐Lactamase of Bacillus licheniformis 749/C at 2 Å resolution , 1990 .

[58]  S. G. Waley,et al.  Site-directed mutagenesis of beta-lactamase I. Single and double mutants of Glu-166 and Lys-73. , 1990, The Biochemical journal.

[59]  J. Richards,et al.  Active-site mutants of beta-lactamase: use of an inactive double mutant to study requirements for catalysis. , 1986, Biochemistry.

[60]  A. Fink,et al.  Site-directed mutagenesis of glutamate-166 in beta-lactamase leads to a branched path mechanism. , 1994, Biochemistry.

[61]  J M Ghuysen,et al.  The crystal structure of the beta-lactamase of Streptomyces albus G at 0.3 nm resolution. , 1987, The Biochemical journal.

[62]  J. Kraut Serine proteases: structure and mechanism of catalysis. , 1977, Annual review of biochemistry.

[63]  R. Pratt,et al.  Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases. , 1988, The Biochemical journal.

[64]  J. Frère,et al.  Interactions between active-site-serine beta-lactamases and compounds bearing a methoxy side chain on the alpha-face of the beta-lactam ring: kinetic and molecular modelling studies. , 1993, The Biochemical journal.

[65]  G. Jacoby,et al.  Extended-spectrum beta-lactamases , 1989, Antimicrobial Agents and Chemotherapy.

[66]  A. Fink,et al.  Site-directed mutagenesis of beta-lactamase leading to accumulation of a catalytic intermediate. , 1991, Biochemistry.

[67]  J M Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[68]  K. Struhl,et al.  An efficient method for generating proteins with altered enzymatic properties: application to beta-lactamase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Loosemore Mj,et al.  Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid: kinetics. , 1980 .

[70]  L. Ellerby,et al.  The role of lysine-234 in beta-lactamase catalysis probed by site-directed mutagenesis. , 1990, Biochemistry.

[71]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Richards,et al.  Substrate specificities in class A beta-lactamases: preference for penams vs. cephems. The role of residue 237. , 1989, Proteins.

[73]  J. Knowles,et al.  Inactivation of the RTEM beta-lactamase from Escherichia coli. Interaction of penam sulfones with enzyme. , 1981, Biochemistry.

[74]  J. Frère,et al.  Crystallographic mapping of beta-lactams bound to a D-alanyl-D-alanine peptidase target enzyme. , 1989, Journal of molecular biology.

[75]  R. Krishnaraj,et al.  Effect of side-chain amide thionation on turnover of beta-lactam substrates by beta-lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis. , 1992, The Biochemical journal.

[76]  J. Richards,et al.  Creation of a test plasmid for detecting G-C-to-T-A transversions by changing serine to arginine in the active site of beta-lactamase , 1987, Journal of bacteriology.

[77]  M. Syvanen,et al.  Gly‐238‐Ser substitution changes the substrate specificity of the SHV class A β‐lactamases , 1991, Proteins.

[78]  S. G. Waley,et al.  β-lactamase I from Bacillus cereus: structure and site-directed mutagenesis , 1987 .

[79]  W. Sougakoff,et al.  Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. , 1988, Reviews of infectious diseases.

[80]  J. Frère,et al.  Occurrence of a serine residue in the penicillin‐binding site of the exocellular DD‐carboxy‐peptidase‐transpeptidase from Streptomyces R61 , 1976, FEBS letters.

[81]  P. Moews,et al.  Beta-lactamase of Bacillus licheniformis 749/C. Refinement at 2 A resolution and analysis of hydration. , 1991 .

[82]  B. Spratt,et al.  Sequences of the active-site peptides of three of the high-Mr penicillin-binding proteins of Escherichia coli K-12. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[84]  C. Betzel,et al.  Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution , 1992, Nature.

[85]  F Jacob,et al.  Role of the conserved amino acids of the 'SDN' loop (Ser130, Asp131 and Asn132) in a class A beta-lactamase studied by site-directed mutagenesis. , 1990, The Biochemical journal.

[86]  R. Labia,et al.  Interactions of new plasmid-mediated beta-lactamases with third-generation cephalosporins. , 1988, Reviews of infectious diseases.

[87]  A. Riggs,et al.  Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[88]  E. Billings,et al.  Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Ser130 in class A beta-lactamases. , 1992, Protein engineering.

[89]  M. Boissinot,et al.  Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC1 beta-lactamase crystal structure. , 1990, The Journal of biological chemistry.

[90]  D. Botstein,et al.  Probing β‐lactamase structure and function using random replacement mutagenesis , 1992 .

[91]  J. Richards,et al.  Substrate specificities in class A β‐lactamases: Preference for penams vs. cephams. The role of residues 237 , 1989 .

[92]  T. Grundström,et al.  Active sites of beta-lactamases. The chromosomal beta-lactamases of Pseudomonas aeruginosa and Escherichia coli. , 1982, The Biochemical journal.

[93]  J. Strominger,et al.  Sequence of active site peptides from the penicillin-sensitive D-alanine carboxypeptidase of Bacillus subtilis. Mechanism of penicillin action and sequence homology to beta-lactamases. , 1980, The Journal of biological chemistry.

[94]  W. Sougakoff,et al.  Characterization of the plasmid genes blaT-4 and blaT-5 which encode the broad-spectrum beta-lactamases TEM-4 and TEM-5 in enterobacteriaceae. , 1989, Gene.

[95]  P Huovinen,et al.  Sequence of PSE-2 beta-lactamase , 1988, Antimicrobial Agents and Chemotherapy.

[96]  J. Frère,et al.  Role of residue Lys315 in the mechanism of action of the Enterobacter cloacae 908R beta-lactamase. , 1994, Biochemistry.

[97]  L. Gutmann,et al.  Molecular evolution of ubiquitous β‐lactamases towards extended‐spectrum enzymes active against newer β‐lactam antibiotics , 1990 .

[98]  J. Frère,et al.  Mechanism of acyl transfer by the class A serine beta-lactamase of Streptomyces albus G. , 1991, The Biochemical journal.

[99]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[100]  J. Samama,et al.  Site‐directed mutagenesis of β‐lactamase TEM‐1 , 1993 .

[101]  J. Masson,et al.  Replacement of lysine 234 affects transition state stabilization in the active site of beta-lactamase TEM1. , 1991, The Journal of biological chemistry.

[102]  J. Frère,et al.  Diversity of the mechanisms of resistance to beta-lactam antibiotics. , 1991, Research in Microbiology.

[103]  J. Frère,et al.  Mode of action: interaction with the penicillin binding proteins , 1992 .

[104]  C. J. Thomson,et al.  TRC-1: Emergence of a clavulanic acid-resistant TEM β-lactamase in a clinical strain , 1992 .

[105]  C. Robinson,et al.  Site-directed mutagenesis of beta-lactamase I: role of Glu-166. , 1994, The Biochemical journal.

[106]  R. Labia,et al.  Structural features related to hydrolytic activity against ceftazidime of plasmid-mediated SHV-type CAZ-5 beta-lactamase , 1989, Antimicrobial Agents and Chemotherapy.

[107]  J. Frère,et al.  A class-A beta-lactamase from Pseudomonas stutzeri that is highly active against monobactams and cefotaxime. , 1993, Biochemical Journal.

[108]  J M Ghuysen,et al.  The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. , 1988, The Biochemical journal.

[109]  D. Shlaes,et al.  Mutations altering substrate specificity in OHIO-1, and SHV-1 family beta-lactamase. , 1992, The Biochemical journal.

[110]  J. Knowles,et al.  Directed selective pressure on a β-lactamase to analyse molecular changes involved in development of enzyme function , 1976, Nature.