Simulating backward wave propagation in metamaterial with radial basis functions

Abstract In this paper we revisit the radial basis function (RBF) meshless method and implement it to solve the time-dependent Maxwell's equations in metamaterials. Numerical simulations of the backward wave propagation phenomena are successfully achieved using this RBF method with properly chosen free parameters in the RBFs.

[1]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[2]  C. Shu,et al.  Computation of Incompressible Navier-Stokes Equations by Local RBF-based Differential Quadrature Method , 2005 .

[3]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[4]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[5]  Robert V. Kohn,et al.  Erratum: Cloaking via change of variables for the Helmholtz equation , 2010 .

[6]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[7]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[8]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[9]  Nathan Louis Gibson,et al.  Analysis of spatial high-order finite difference methods for Maxwell's equations in dispersive media , 2012 .

[10]  Elisa Francomano,et al.  Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method , 2015, J. Sci. Comput..

[11]  Jiangxin Wang,et al.  Solving Maxwell's Equation in Meta-Materials by a CG-DG Method , 2016 .

[12]  D. L. Young,et al.  Solution of Maxwell's Equations Using the MQ Method , 2005 .

[13]  Lilian Wang,et al.  Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics , 2015, 1505.03232.

[14]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[15]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[16]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[17]  Lei Wang,et al.  RBF-vortex methods for the barotropic vorticity equation on a sphere , 2015, J. Comput. Phys..

[18]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[19]  Ralf Hiptmair,et al.  Mixed finite element approximation of eddy current problems , 2004 .

[20]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[21]  Wei Yang,et al.  Mathematical Analysis and Time-Domain Finite Element Simulation of Carpet Cloak , 2014, SIAM J. Appl. Math..

[22]  Mehdi Dehghan,et al.  The local radial point interpolation meshless method for solving Maxwell equations , 2017, Engineering with Computers.

[23]  Patrick Joly,et al.  Mathematical models for dispersive electromagnetic waves: An overview , 2017, Comput. Math. Appl..

[24]  Yanlai Chen,et al.  A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains , 2014, J. Sci. Comput..

[25]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[26]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[27]  Xinlong Feng,et al.  A compact integrated RBF method for time fractional convection-diffusion-reaction equations , 2019, Comput. Math. Appl..

[28]  Christophe Fumeaux,et al.  Recent developments of the meshless radial point interpolation method for time‐domain electromagnetics , 2012 .

[29]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[30]  Y. Hon,et al.  Domain decomposition for radial basis meshless methods , 2004 .

[31]  Jan S. Hesthaven,et al.  Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials , 2014, J. Comput. Phys..

[32]  Chi-Wang Shu,et al.  Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials , 2017, Comput. Math. Appl..

[33]  Jeremy Levesley,et al.  A multilevel sparse kernel-based stochastic collocation finite element method for elliptic problems with random coefficients , 2018, Comput. Math. Appl..

[34]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[35]  A. Cheng,et al.  A comparison of efficiency and error convergence of multiquadric collocation method and finite element method , 2003 .

[36]  J. Zou,et al.  Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers , 2013, 1305.1994.

[37]  Armin Iske,et al.  Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.

[38]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[39]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[40]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[41]  Jichun Li,et al.  A radial basis meshless method for solving inverse boundary value problems , 2004 .

[42]  Y. Duan,et al.  Meshless Radial Basis Function Method for Transient Electromagnetic Computations , 2008, IEEE Transactions on Magnetics.

[43]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[44]  Shan Zhao,et al.  Time-Domain Numerical Solutions of Maxwell Interface Problems with Discontinuous Electromagnetic Waves , 2016 .

[45]  Michèle Vanmaele,et al.  An RBF-FD method for pricing American options under jump-diffusion models , 2018, Comput. Math. Appl..

[46]  Elisabeth Larsson,et al.  Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..

[47]  Wei Cai,et al.  A Computational Stochastic Methodology for the Design of Random Meta-materials under Geometric Constraints , 2018, SIAM J. Sci. Comput..

[48]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[49]  Xun Lu,et al.  RBF-PU method for pricing options under the jump-diffusion model with local volatility , 2018, J. Comput. Appl. Math..

[50]  Richard Ziolkowski,et al.  Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. , 2003, Optics express.

[51]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[52]  Daniel Onofrei,et al.  Broadband exterior cloaking. , 2009, Optics express.

[53]  Liping Gao,et al.  Stability and superconvergence analysis of the FDTD scheme for the 2D Maxwell equations in a lossy medium , 2011 .

[54]  Jun Zou,et al.  Edge Element Method for Optimal Control of Stationary Maxwell System with Gauss Law , 2017, SIAM J. Numer. Anal..

[55]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[56]  Jichun Li,et al.  Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions , 2005, Adv. Comput. Math..

[57]  Xiang Wang,et al.  Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids , 2018 .

[58]  Holger Wendland,et al.  Multiscale RBF collocation for solving PDEs on spheres , 2012, Numerische Mathematik.

[59]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[60]  Yanping Lin,et al.  A new energy-conserved S-FDTD scheme for Maxwell's equations in metamaterials , 2013 .

[61]  Jichun Li,et al.  Computational Partial Differential Equations Using MATLAB , 2008 .

[62]  Robert Michael Kirby,et al.  A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces , 2014, Journal of Scientific Computing.

[63]  Richard W. Ziolkowski,et al.  Maxwellian material based absorbing boundary conditions , 1999 .

[64]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[65]  Steven J. Ruuth,et al.  An RBF-FD closest point method for solving PDEs on surfaces , 2018, J. Comput. Phys..

[66]  Louis J. Wicker,et al.  Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations , 2016, J. Comput. Phys..

[67]  Leszek Demkowicz,et al.  Numerical simulations of cloaking problems using a DPG method , 2013 .

[68]  Susanne C. Brenner,et al.  An Adaptive $$\varvec{P_1}$$P1 Finite Element Method for Two-Dimensional Transverse Magnetic Time Harmonic Maxwell’s Equations with General Material Properties and General Boundary Conditions , 2016, J. Sci. Comput..

[69]  Yiqiang Yu,et al.  A Time-Domain Collocation Meshless Method With Local Radial Basis Functions for Electromagnetic Transient Analysis , 2014, IEEE Transactions on Antennas and Propagation.