Illustrating the overall reaction network of the synthesis-gas-to-hydrocarbons process over iron-zeolite bifunctional catalysis

[1]  J. Gascón,et al.  Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis , 2021, Nature Communications.

[2]  Jian Sun,et al.  Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. , 2021, Chemical Society reviews.

[3]  Anmin Zheng,et al.  Molecular Understanding of the Catalytic Consequence of Ketene Intermediates under Confinement , 2021, Journal of the American Chemical Society.

[4]  Leigh Krietsch Boerner Airlines want to make flight more sustainable. How will they do it , 2021 .

[5]  F. Deng,et al.  Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. , 2021, Chemical Society reviews.

[6]  Zhongmin Liu,et al.  Dynamic Activation of C1 Molecules Evoked by Zeolite Catalysis , 2021, ACS central science.

[7]  J. Gascón,et al.  Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization , 2020, ACS Catalysis.

[8]  A. Beale,et al.  Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts , 2020, Nature Materials.

[9]  Jaehoon Kim,et al.  Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlOx Bifunctional Catalysts , 2020 .

[10]  B. Weckhuysen,et al.  Elucidating Zeolite Channel Geometry–Reaction Intermediate Relationships for the Methanol‐to‐Hydrocarbon Process , 2020, Angewandte Chemie.

[11]  Zhongmin Liu,et al.  Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction , 2020, Nature Communications.

[12]  J. Gascón,et al.  Illuminating Initial Carbon-Carbon Bond Formation during the Early Stages of Methane Dehydroaromatization. , 2020, Angewandte Chemie.

[13]  Ke Gong,et al.  C-C bond formation in syngas conversion over Zn sites grafted on ZSM-5. , 2020, Angewandte Chemie.

[14]  J. Gascón,et al.  A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion , 2019, Journal of the American Chemical Society.

[15]  M. Bowker Methanol Synthesis from CO2 Hydrogenation , 2019, ChemCatChem.

[16]  J. Hazemann,et al.  Tandem Conversion of CO2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts , 2019, ChemCatChem.

[17]  W. Zhou,et al.  New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. , 2019, Chemical Society reviews.

[18]  B. Weckhuysen,et al.  Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties , 2019, ACS Catalysis.

[19]  B. Weckhuysen,et al.  Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes , 2018, Nature Chemistry.

[20]  A. Bhan,et al.  Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds , 2018, Nature Catalysis.

[21]  J. Gascón,et al.  Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins , 2018, ACS Catalysis.

[22]  Can Li,et al.  Investigating the Coke Formation Mechanism of H-ZSM-5 during Methanol Dehydration Using Operando UV–Raman Spectroscopy , 2018, ACS Catalysis.

[23]  F. Kapteijn,et al.  Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process , 2018, Nature Chemistry.

[24]  B. Weckhuysen,et al.  Recent trends and fundamental insights in the methanol-to-hydrocarbons process , 2018, Nature Catalysis.

[25]  B. Weckhuysen,et al.  Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol‐to‐Hydrocarbons Process , 2018, Angewandte Chemie.

[26]  Donghai Mei,et al.  Tracking the Chemical Transformations at the Brønsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore , 2017 .

[27]  K. Lillerud,et al.  Hydrogen transfer versus methylation: on the genesis of aromatics formation in the Methanol-To-Hydrocarbons reaction over H-ZSM-5 , 2017 .

[28]  Hengyong Xu,et al.  Directly converting CO2 into a gasoline fuel , 2017, Nature Communications.

[29]  A. Konnov,et al.  Laminar burning velocity of diacetyl + air flames. Further assessment of combustion chemistry of ketene , 2017 .

[30]  Yu Han,et al.  A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5 , 2017 .

[31]  Manuel Moliner,et al.  “Ab initio” synthesis of zeolites for preestablished catalytic reactions , 2017, Science.

[32]  Cecilia Mondelli,et al.  Status and prospects in higher alcohols synthesis from syngas. , 2017, Chemical Society reviews.

[33]  Won Young Kim,et al.  Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels , 2017 .

[34]  J. Lercher,et al.  Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons. , 2016, Journal of the American Chemical Society.

[35]  Abdullah M. Asiri,et al.  Initial Carbon–Carbon Bond Formation during the Early Stages of the Methanol‐to‐Olefin Process Proven by Zeolite‐Trapped Acetate and Methyl Acetate , 2016, Angewandte Chemie.

[36]  C. Berrueco,et al.  Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts , 2016 .

[37]  Li-Chiang Lin,et al.  Effects of Zeolite Structural Confinement on Adsorption Thermodynamics and Reaction Kinetics for Monomolecular Cracking and Dehydrogenation of n-Butane. , 2016, Journal of the American Chemical Society.

[38]  F. Deng,et al.  Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy. , 2016, Angewandte Chemie.

[39]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[40]  Abdullah M. Asiri,et al.  Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34 , 2015, ACS catalysis.

[41]  S. Zones,et al.  Implications of Transition State Confinement within Small Voids for Acid Catalysis , 2014 .

[42]  A. J. Markvoort,et al.  Mechanism and microkinetics of the Fischer-Tropsch reaction. , 2013, Physical chemistry chemical physics : PCCP.

[43]  P. Stair,et al.  Time-Resolved Studies of Ethylene and Propylene Reactions in Zeolite H-MFI by In-Situ Fast IR Heating and UV Raman Spectroscopy , 2012 .

[44]  S. Abelló,et al.  Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. , 2011, ChemSusChem.

[45]  Unni Olsbye,et al.  Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. , 2011, Chemistry.

[46]  Anmin Zheng,et al.  13C Chemical Shift of Adsorbed Acetone for Measuring the Acid Strength of Solid Acids: A Theoretical Calculation Study , 2010 .

[47]  J. Berg,et al.  Role of Step Sites and Surface Vacancies in the Adsorption and Activation of CO on χ-Fe5C2 Surfaces , 2010 .

[48]  A. Borgna,et al.  Density Functional Theory Study of the CO Insertion Mechanism for Fischer−Tropsch Synthesis over Co Catalysts , 2009 .

[49]  Burtron H. Davis,et al.  Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts , 2009 .

[50]  Unni Olsbye,et al.  Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. , 2008, Chemistry.

[51]  B. Weckhuysen,et al.  The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. , 2008, Chemical Society reviews.

[52]  J. Gaube,et al.  Studies on the reaction mechanism of the Fischer-Tropsch synthesis on iron and cobalt catalysts , 2008 .

[53]  Berend Smit,et al.  Towards a molecular understanding of shape selectivity , 2008, Nature.

[54]  K. Lillerud,et al.  Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. , 2006, Journal of the American Chemical Society.

[55]  S. Becker,et al.  Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[56]  F. G. Botes,et al.  The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production , 2004 .

[57]  A. Faaij,et al.  Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification , 2002 .

[58]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[59]  Weiguo Song,et al.  A Persistent Carbenium Ion on the Methanol-to-Olefin Catalyst HSAPO-34: Acetone Shows the Way , 2001 .

[60]  Weiguo Song,et al.  Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34 , 2000 .

[61]  A. Corma,et al.  Activation of Hydrogen on Zeolites: Kinetics and Mechanism of n-Heptane Cracking on H-ZSM-5 Zeolites Under High Hydrogen Pressure , 1995 .

[62]  E. Munson,et al.  Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones , 1994 .

[63]  W. Sachtler,et al.  Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications , 1979 .

[64]  Gareth A. Morris,et al.  Enhancement of nuclear magnetic resonance signals by polarization transfer , 1979 .

[65]  R. Schliebs,et al.  On the displacement reaction CH3+CH3 COCOCH3→CH3 COCH3+CH3 CO , 1978 .

[66]  Gisela Henrici-Olivé,et al.  The Fischer‐Tropsch Synthesis: Molecular Weight Distribution of Primary Products and Reaction Mechanism , 1976 .

[67]  P. Emmett,et al.  FISCHER—TROPSCH SYNTHESIS MECHANISM STUDIES. II. THE ADDITION OF RADIOACTIVE KETENE TO THE SYNTHESIS GAS , 1959 .

[68]  F. O. Rice,et al.  The Thermal Decomposition of Diacetyl , 1939 .

[69]  J. Gascón,et al.  Acidity modification of ZSM-5 for enhanced production of light olefins from CO2 , 2020 .

[70]  E. Steen,et al.  Mechanistic Issues in Fischer–Tropsch Catalysis , 2011 .

[71]  B. Davis,et al.  Role of CO2 oxygenates and alkenes in the initiation of chain growth during the Fischer-Tropsch synthesis , 1997 .

[72]  Bernard Delmon,et al.  Studies in Surface Science and Catalysis , 1988 .

[73]  P. Emmett,et al.  Mechanism Studies of the Fischer-Tropsch Synthesis. The Addition of Radioactive Methanol, Carbon Dioxide and Gaseous Formaldehyde , 1957 .

[74]  P. Emmett,et al.  Fischer—Tropsch Synthesis Mechanism Studies. The Addition of Radioactive Alcohols to the Synthesis Gas , 1953 .

[75]  F. Fischer Development of the benzine synthesis from carbon monoxide and hydrogen at atmospheric pressure. [Co--Cu--Th or Ni catalysts; boiling point composition curve for benzine and bibliography for 1926-1930] , 2022 .