Statistical guarantees for Bayesian uncertainty quantification in nonlinear inverse problems with Gaussian process priors

Bayesian inference and uncertainty quantification in a general class of non-linear inverse regression models is considered. Analytic conditions on the regression model $\{\mathscr G(\theta): \theta \in \Theta\}$ and on Gaussian process priors for $\theta$ are provided such that semi-parametrically efficient inference is possible for a large class of linear functionals of $\theta$. A general semi-parametric Bernstein-von Mises theorem is proved that shows that the (non-Gaussian) posterior distributions are approximated by certain Gaussian measures centred at the posterior mean. As a consequence posterior-based credible sets are shown to be valid and optimal from a frequentist point of view. The theory is demonstrated to cover two prototypical applications with PDEs that arise in non-linear tomography problems: the first concerns an elliptic inverse problem for the Schr\"odinger equation, and the second the inversion of non-Abelian $X$-ray transforms. New PDE techniques are developed to show that the relevant Fisher information operators are invertible between suitable function spaces.

[1]  Sara van de Geer,et al.  Convergence Rates for Penalized Least Squares Estimators in PDE Constrained Regression Problems , 2018, SIAM/ASA J. Uncertain. Quantification.

[2]  William R B Lionheart,et al.  Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields , 2017, Scientific Reports.

[3]  Kai Lai Chung,et al.  From Brownian Motion To Schrödinger's Equation , 1995 .

[4]  Matti Lassas,et al.  Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators , 2015, 1507.01772.

[5]  Kweku Abraham,et al.  On statistical Calderón problems , 2020 .

[6]  Guillaume Bal,et al.  Multi-source quantitative photoacoustic tomography in a diffusive regime , 2011 .

[7]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[8]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[9]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[10]  Matteo Giordano,et al.  Bernstein-von Mises Theorems and Uncertainty Quantification for Linear Inverse Problems , 2018, SIAM/ASA J. Uncertain. Quantification.

[11]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[12]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[13]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[14]  Aad van der Vaart,et al.  Bayesian linear inverse problems in regularity scales , 2018, Annales De L Institut Henri Poincare-probabilites Et Statistiques.

[15]  Patrick R. Conrad,et al.  Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.

[16]  Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials , 2018, Nature Communications.

[17]  Eronika,et al.  UNCERTAINTY QUANTIFICATION FOR BAYESIAN CART , 2020 .

[18]  R. Nickl,et al.  Bernstein–von Mises theorems for statistical inverse problems II: compound Poisson processes , 2017, Electronic Journal of Statistics.

[19]  Richard Nickl,et al.  On polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms , 2020, ArXiv.

[20]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .

[21]  M. Salo,et al.  The attenuated ray transform on simple surfaces , 2010, 1004.2323.

[22]  Kolyan Ray Adaptive Bernstein–von Mises theorems in Gaussian white noise , 2014, 1407.3397.

[23]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[24]  Joonas Ilmavirta,et al.  4. Integral geometry on manifolds with boundary and applications , 2018, The Radon Transform.

[25]  Lassi Roininen,et al.  Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .

[26]  R. Nickl,et al.  Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.

[27]  G. Uhlmann,et al.  The boundary rigidity problem in the presence of a magnetic field , 2006, math/0611788.

[28]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[29]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[30]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[31]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[32]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[33]  Richard Nickl,et al.  Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem , 2019, ArXiv.

[34]  R. Novikov Non-abelian Radon transform and its applications , 2019 .

[35]  R. Novikov ON DETERMINATION OF A GAUGE FIELD ON ℝd FROM ITS NON-ABELIAN RADON TRANSFORM ALONG ORIENTED STRAIGHT LINES , 2002, Journal of the Institute of Mathematics of Jussieu.

[36]  Richard Nickl,et al.  Efficient nonparametric Bayesian inference for $X$-ray transforms , 2017, The Annals of Statistics.

[37]  R. Nickl,et al.  Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms , 2019, Communications on Pure and Applied Mathematics.

[38]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[39]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[40]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[41]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[42]  Stig Larsson,et al.  Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.

[43]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[44]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[45]  Gregory Eskin On the non-abelian Radon transform , 2004 .

[46]  Richard Nickl,et al.  Bernstein–von Mises theorems for statistical inverse problems I: Schrödinger equation , 2017, Journal of the European Mathematical Society.

[47]  Kolyan Ray,et al.  Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.

[48]  Markus Reiss,et al.  Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.

[49]  M. Salo,et al.  The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.

[50]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[51]  R. Nickl,et al.  NONPARAMETRIC STATISTICAL INFERENCE FOR DRIFT VECTOR FIELDS OF MULTI-DIMENSIONAL , 2019 .

[52]  R. Nickl,et al.  On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.

[53]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[54]  J. Rousseau,et al.  A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.

[55]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.