A multicriteria optimization method for process planning

The goal of this work is to develop a methodology for the automatic generation of optimized and innovative machining process planning that allow aeronautical subcontractors to deal with current productivity and competitiveness issues. A four-step methodology is proposed, allowing the user to obtain optimized machining process planning respecting his know-how and experience and introducing innovation. This methodology is based on a representation of the decision-making behavior of the user in a given situation as well as on the risk to industrialization and complete the formalization of the process planning performance by taking into account performance criteria other than the machining time or the overall cost. A genetic algorithm is used to generate a large set of various operable processes. An AHP method is used to model the decision process planning and choose the optimal process planning. The methodology presents the best process planning generated and the use of social choice theory allows it to target the most efficient process planning to implement, by integrating a risk criterion to industrialization. Mots clefs : Mots clefs Process planning, multicriteria optimization, Ga algorithm, AHP, CAPP 24 Congrès Français de Mécanique Brest, 26 au 30 Août 2019

[1]  F. W. Taylor The Art of Cutting Metals , 1907 .

[2]  Richard A. Wysk AN AUTOMATED PROCESS PLANNING AND SELECTION PROGRAM: APPAS. , 1977 .

[3]  B. J. Davies,et al.  An interactive process planning system for prismatic parts (ICAPP) , 1981 .

[4]  Harold J. Steudel,et al.  Computer-aided process planning: past, present and future , 1984 .

[5]  H.J.J. Kals,et al.  XPLANE, a Generative Computer Aided Process Planning System for Part Manufacturing , 1986 .

[6]  Marco Santochi,et al.  COATS: an Expert Module for Optimal Tool Selection , 1986 .

[7]  James A. Reggia,et al.  A Comparative Analysis of Methods for Expert Systems , 1986, Int. J. Man Mach. Stud..

[8]  R. W. Saaty,et al.  The analytic hierarchy process—what it is and how it is used , 1987 .

[9]  Inyong Ham,et al.  Computer-Aided Process Planning: The Present and the Future , 1988 .

[10]  Hong-Chao Zhang,et al.  Computer Aided Process Planning: the state-of-the-art survey , 1989 .

[11]  F. L. Krause Technological planning systems for the future , 1990 .

[12]  G. Noel,et al.  A la recherche du temps à gagner. Pourquoi la technologie de groupe ? , 1990, Revue Française de Gestion Industrielle.

[13]  Hoda A. ElMaraghy,et al.  Evolution and Future Perspectives of CAPP , 1993 .

[14]  W. Eversheim,et al.  Computer-aided process planning—State of the art and future development , 1993 .

[15]  Jeffrey D. Tew,et al.  Simulation optimization by genetic search , 1994 .

[16]  Shee-Hock Yeo Knowledge-based feature recognizer for machining , 1994 .

[17]  Colin R. Reeves,et al.  A genetic algorithm for flowshop sequencing , 1995, Comput. Oper. Res..

[18]  Ruxu Du,et al.  A fuzzy expert system for the design of machining operations , 1995 .

[19]  C. Ou-Yang,et al.  Developing an integrated framework for feature-based early manufacturing cost estimation , 1997 .

[20]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[21]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[22]  Angappa Gunasekaran,et al.  Computer-aided process planning: A state of art , 1998 .

[23]  Dimitris Kiritsis,et al.  Petri net techniques for process planning cost estimation , 1999 .

[24]  Türkay Dereli,et al.  Optimisation of process planning functions by genetic algorithms , 1999 .

[25]  Leonardo Ensslin,et al.  Decision Support Systems in action: Integrated application in a multicriteria decision aid process , 1999, Eur. J. Oper. Res..

[26]  K. Ridgway,et al.  Selection of cutting tools and conditions of machining operations using an expert system , 2000 .

[27]  B. Y. Leea,et al.  Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations , 2000 .

[28]  Ferruh Öztürk,et al.  Neural network based non-standard feature recognition to integrate CAD and CAM , 2001, Comput. Ind..

[29]  Jong-Yun Jung,et al.  Manufacturing cost estimation for machined parts based on manufacturing features , 2002, J. Intell. Manuf..

[30]  Andrew Y. C. Nee,et al.  A fuzzy set AHP-based DFM tool for rotational parts , 2003 .

[31]  F. Villeneuve Génération automatique des processsus de fabrication , 2003 .

[32]  Ciro A. Rodríguez,et al.  Influence of tool path strategy on the cycle time of high-speed milling , 2003, Comput. Aided Des..

[33]  J. Vivancos,et al.  Optimal machining parameters selection in high speed milling of hardened steels for injection moulds , 2004 .

[34]  Mustafa Yurdakul,et al.  AHP as a strategic decision-making tool to justify machine tool selection , 2004 .

[35]  Vincent Pateloup Amélioration du comportement cinématique des machines outils UGV , 2005 .

[36]  I. K. Hui,et al.  Development of a computer-integrated system to support CAD to CAPP , 2005 .

[37]  Eun Young Heo,et al.  Estimation of NC machining time using NC block distribution for sculptured surface machining , 2006 .

[38]  Howard Raiffa,et al.  Preferences for multi-attributed alternatives , 2006 .

[39]  D. Dubois,et al.  Concepts et méthodes pour l'aide à la décision. 3, analyse multicritère , 2006 .

[40]  Thierry Marchant,et al.  Evaluation and Decision Models with Multiple Criteria: Stepping Stones for the Analyst , 2006 .

[41]  D. Dubois,et al.  Concepts et méthodes pour l'aide à la décision. 1, outils de modélisation , 2006 .

[42]  Gülçin Büyüközkan,et al.  A fuzzy optimization model for QFD planning process using analytic network approach , 2006, Eur. J. Oper. Res..

[43]  Weiming Shen,et al.  Applications of agent-based systems in intelligent manufacturing: An updated review , 2006, Adv. Eng. Informatics.

[44]  Asif Iqbal,et al.  A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process , 2007, Expert Syst. Appl..

[45]  Ramy Harik Spécifications de fonctions pour un système d'aide à la génération automatique de gamme d'usinage : Application aux pièces aéronautiques de structure, prototype logiciel dans le cadre du projet RNTL USIQUICK , 2007 .

[46]  Yoong-Ho Jung,et al.  Five-axis machining time estimation algorithm based on machine characteristics , 2007 .

[47]  Berend Denkena,et al.  Knowledge Management in Process Planning , 2007 .

[48]  Wen Wang,et al.  Design of neural network-based estimator for tool wear modeling in hard turning , 2008, J. Intell. Manuf..

[49]  Manoj Kumar Tiwari,et al.  Multi-agent system for distributed computer-aided process planning problem in e-manufacturing environment , 2009 .

[50]  Mojtaba Salehi,et al.  Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning , 2009, Eng. Appl. Artif. Intell..

[51]  Tony L. Schmitz,et al.  Application of decision analysis to milling profit maximisation: an introduction , 2009 .

[52]  Lihui Wang,et al.  Embedding a process plan in function blocks for adaptive machining , 2010 .

[53]  F. Echeverri,et al.  New promising Euphorbiaceae extracts with activity in human lymphocytes from primary cell cultures , 2011, Immunopharmacology and immunotoxicology.

[54]  Xun Xu,et al.  Computer-aided process planning – A critical review of recent developments and future trends , 2011, Int. J. Comput. Integr. Manuf..

[55]  Lihui Wang,et al.  A review of function blocks for process planning and control of manufacturing equipment , 2012 .

[56]  Wei Wang,et al.  A feature-based method for NC machining time estimation , 2013 .

[57]  Stefania Pellegrinelli,et al.  An integrated approach to support the joint design of machine tools and process planning , 2013 .

[58]  Patrick Pujo,et al.  Intelligent Control of Renewable Holonic Energy Systems , 2013 .

[59]  Yusri Yusof,et al.  Survey on computer-aided process planning , 2014, The International Journal of Advanced Manufacturing Technology.

[60]  James Gao,et al.  Web-based Process Planning for Machine Tool Maintenance and Services , 2015 .

[61]  Andrea C. Hupman,et al.  Incentives versus value in manufacturing systems: An application to high-speed milling , 2015 .

[62]  Edmundas Kazimieras Zavadskas,et al.  Fuzzy multiple criteria decision-making techniques and applications - Two decades review from 1994 to 2014 , 2015, Expert Syst. Appl..

[63]  Sami Hassini Qualification multi-critères des gammes d'usinage : application aux pièces de structure aéronautique en alliage Airware® , 2015 .

[64]  Yusuf Altintas,et al.  Prediction of part machining cycle times via virtual CNC , 2015 .

[65]  Thomas R. Kurfess,et al.  Cost optimization and experimental design in milling using surrogate models and value of information , 2015 .

[66]  D. Dimitrov,et al.  A Cost Modelling Approach for Milling Titanium Alloys , 2016 .

[67]  Taha Hossein Rashidi,et al.  Impact of risk attitudes and perception on game theoretic driving interactions and safety. , 2016, Accident; analysis and prevention.

[68]  Hidehiko Takahashi,et al.  Flexible modulation of risk attitude during decision-making under quota , 2016, NeuroImage.