Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics

In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using tridiagonal matrix models, in the limit as β→∞. We prove that the fluctuations are described by multivariate Gaussians of covariance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. The covariance matrix itself is expressed as combinations of Hermite or Laguerre polynomials respectively. We show that the approximations are of real value even for small β; we can use them to approximate the true functions even for the traditional β=1,2,4 values.

[1]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[2]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[3]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[4]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[5]  Editors , 1986, Brain Research Bulletin.

[6]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[7]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[10]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[11]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[12]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[13]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[14]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[15]  Alan Edelman,et al.  MOPS: Multivariate orthogonal polynomials (symbolically) , 2004, J. Symb. Comput..

[16]  C. Tracy,et al.  The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.