New technologies applied to modelling taphonomic alterations

Abstract Archaeology is developing considerably through the incorporation and application of several methodologies and techniques from science, technology, engineering and mathematics (STEM) disciplines. These technologies have significantly improved our ability to document, preserve, study and present highly precise and accurate digital models of whole sites and archaeological elements, as well as specific details of them. In this article, we will review the different 3D documentation techniques currently available in archaeology, focusing on bone taphonomy. Our aim is to characterise the range of alterations that fossil bones may experience. Thus, here we present a review of the existing literature and future perspectives on how to approach the 3D study of carnivore and rodent tooth marks, cut and percussion marks, biochemical alterations and other Bone Surface Modifications (BSMs).

[1]  I. Martínez,et al.  Carnivore activity in the Sima de los Huesos (Atapuerca, Spain) hominin sample , 2014 .

[2]  E J Bartelink,et al.  Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. , 2001, Journal of forensic sciences.

[3]  Wolfgang Förstner,et al.  Photogrammetric Computer Vision: Statistics, Geometry, Orientation and Reconstruction , 2017 .

[4]  T. White,et al.  Hominid butchers and biting crocodiles in the African Plio–Pleistocene , 2017, Proceedings of the National Academy of Sciences.

[5]  A. J. Sutcliffe Similarity of Bones and Antlers gnawed by Deer to Human Artefacts , 1973, Nature.

[6]  P. Shipman,et al.  Cutmark Mimics on Modern and Fossil Bovid Bones , 1984, Current Anthropology.

[7]  Pat Shipman,et al.  Life History of a Fossil: An Introduction to Taphonomy and Paleoecology , 1981 .

[8]  D. Álvarez-Alonso,et al.  The exploitation of hunted resources during the Magdalenian in the Cantabrian region. Systematization of butchery processes at Coímbre cave (Asturias, Spain) , 2019, Quaternary International.

[9]  J. Arsuaga,et al.  Sima de los Huesos (Sierra de Atapuerca, Spain). The site. , 1997, Journal of human evolution.

[10]  Diego González-Aguilera,et al.  3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art , 2009, Sensors.

[11]  Diego González-Aguilera,et al.  A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner , 2008, Sensors.

[12]  Paul S.C. Taçon,et al.  Testing the value of low-cost Structure-from-Motion (SfM) photogrammetry for metric and visual analysis of rock art , 2018 .

[13]  Manuel Domínguez-Rodrigo,et al.  Distinguishing butchery cut marks from crocodile bite marks through machine learning methods , 2018, Scientific Reports.

[14]  Onesphor Kyara Lithic raw materials and their implications on assemblage variation and hominid behavior during bed II, Olduvai Gorge, Tanzania , 1999 .

[15]  Diego González-Aguilera,et al.  Testing accuracy in 2D and 3D geometric morphometric methods for cut mark identification and classification , 2018, PeerJ.

[16]  Diego González-Aguilera,et al.  Pandora: A new morphometric and statistical software for analysing and distinguishing cut marks on bones , 2017 .

[17]  D. González-Aguilera,et al.  Geometric-morphometric analysis of tooth pits and the identification of felid and hyenid agency in bone modification , 2019, Quaternary International.

[18]  F. Fernández RESCATE DOCUMENTAL DE PETROGLIFOS Y RECONSTRUCCIÓN 3D DEL CORREDOR DOLMÉNICO DE CUBILLEJO DE LARA, BURGOS PETROGLYPHS DOCUMENTARY RETRIEVAL AND 3D RECONSTRUCTION OF THE DOLMEN CORRIDOR AT CUBILLEJO DE LARA, BURGOS , 2016 .

[19]  M. Domínguez‐Rodrigo,et al.  Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of ∼3.4-million-year-old butchery evidence from Dikika, Ethiopia , 2012 .

[20]  D. Gonzalez-Aguilera,et al.  Recording and Modeling Paleolithic Caves through Laser Scanning , 2009, 2009 International Conference on Advanced Geographic Information Systems & Web Services.

[21]  Diego González-Aguilera,et al.  Flood Analysis Supported by Low‐cost Geometric Modelling , 2017 .

[22]  Léon Henri-Martin Désarticulations de quelques régions chez les Ruminants et le Cheval à l'époque moustérienne , 1909 .

[23]  Diego González-Aguilera,et al.  Discerning carnivore agency through the three-dimensional study of tooth pits: Revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania) , 2017 .

[24]  Jacopo Crezzini,et al.  Morphometrical Analysis on Cut Marks Using a 3D Digital Microscope , 2012 .

[25]  Erik Otárola-Castillo,et al.  Differentiating between cutting actions on bone using 3D geometric morphometrics and Bayesian analyses with implications to human evolution , 2018 .

[26]  Eileen Johnson,et al.  Current Developments in Bone Technology , 1985 .

[27]  H. Fleisch,et al.  Use of dermestid beetles for cleaning bones , 2006, Calcified Tissue International.

[28]  M. Domínguez‐Rodrigo,et al.  An Experimental Study of the Anatomical Distribution of Cut Marks Created by Filleting and Disarticulation on Long Bone Ends , 2013 .

[29]  Diego González-Aguilera,et al.  On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: The modern Olduvai Carnivore Site (Tanzania) , 2017 .

[30]  Sorin Popescu,et al.  Using reverse engineering in archaeology : ceramic pottery reconstruction , 2012 .

[31]  H. Piepenbrink Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation , 1986 .

[32]  Manuel Domínguez-Rodrigo,et al.  Taphonomic identification of cut marks made with lithic handaxes: an experimental study , 2010 .

[33]  James O'Driscoll,et al.  Landscape applications of photogrammetry using unmanned aerial vehicles , 2018, Journal of Archaeological Science: Reports.

[34]  H. Greenfield The Origins of Metallurgy: Distinguishing Stone from Metal Cut-marks on Bones from Archaeological Sites , 1999 .

[35]  J. Yravedra,et al.  Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis , 2009 .

[36]  Diego González-Aguilera,et al.  Photogrammetric, Geometrical, and Numerical Strategies to Evaluate Initial and Current Conditions in Historical Constructions: A Test Case in the Church of San Lorenzo (Zamora, Spain) , 2016, Remote. Sens..

[37]  Y. Fernández-Jalvo,et al.  Compressive marks from gravel substrate on vertebrate remains: a preliminary experimental study , 2014 .

[38]  C. Hackett Microscopical Focal Destruction (Tunnels) in Exhumed Human Bones , 1981, Medicine, science, and the law.

[39]  Dubravko Gajski,et al.  Applications of macro photogrammetry in archaeology , 2016 .

[40]  D. Brothwell Further evidence of bone chewing by ungulates: the sheep of North Ronaldsay, Orkney , 1976 .

[41]  Diego González-Aguilera,et al.  Statistical Comparison between Low-Cost Methods for 3D Characterization of Cut-Marks on Bones , 2017, Remote. Sens..

[42]  M. Domínguez‐Rodrigo,et al.  Reply to McPherron et al.: Doubting Dikika is about data, not paradigms , 2011, Proceedings of the National Academy of Sciences.

[43]  Y. Fernández-Jalvo,et al.  Zooarchaeology and taphonomy of Aurora Stratum (Gran Dolina, Sierra de Atapuerca, Spain). , 1999, Journal of human evolution.

[44]  Juan Francisco Palomeque-González,et al.  FLK West (Lower Bed II, Olduvai Gorge, Tanzania): a new early Acheulean site with evidence for human exploitation of fauna , 2017 .

[45]  C. Marean,et al.  Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks and carnivore tooth marks on bone surfaces , 1996 .

[46]  Pedro Cano,et al.  Uso de escáner láser 3D para el registro del estado previo a la intervención de la Fuente de los Leones de La Alhambra , 2010 .

[47]  Lloyd A. Courtenay,et al.  New taphonomic advances in 3D digital microscopy: A morphological characterisation of trampling marks , 2019, Quaternary International.

[48]  G. Haynes A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones , 1983, Paleobiology.

[49]  H. Bunn Meat-eating and human evolution : studies in the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa , 1982 .

[50]  A. Rodríguez-Hidalgo,et al.  Upper Palaeolithic ritualistic cannibalism at Gough's Cave (Somerset, UK): The human remains from head to toe. , 2015, Journal of human evolution.

[51]  Manuel Domínguez-Rodrigo,et al.  Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? , 2018, Archaeological and Anthropological Sciences.

[52]  Charles P. Egeland,et al.  Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans , 2006 .

[53]  Diego González-Aguilera,et al.  A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): a micro‐photogrammetric and geometric morphometric analysis of fossil cut marks , 2017 .

[54]  M. Collett,et al.  The Makapansgat Limeworks grey breccia: hominids, hyaenas, hystricids or hillwash? , 1980 .

[55]  Diego González-Aguilera,et al.  3D analysis of cut marks using a new geometric morphometric methodological approach , 2019, Archaeological and Anthropological Sciences.

[56]  Diego González-Aguilera,et al.  Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro‐photogrammetry , 2017, Journal of microscopy.

[57]  Santiago Zazo,et al.  Flood Hazard Assessment Supported by Reduced Cost Aerial Precision Photogrammetry , 2018, Remote. Sens..

[58]  Diego González-Aguilera,et al.  Macro-photogrammetry as a tool for the accurate measurement of three-dimensional misalignment in welding , 2016 .

[59]  J. Yravedra,et al.  Lions as Bone Accumulators? Paleontological and Ecological Implications of a Modern Bone Assemblage from Olduvai Gorge , 2016, PloS one.

[60]  P. Shipman,et al.  Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record , 1983 .

[61]  M. Domínguez‐Rodrigo,et al.  A taphonomic study of bone modification and of tooth-mark patterns on long limb bone portions by suids , 2009 .

[62]  Christophe Soligo,et al.  A new method for the quantitative analysis of cutmark micromorphology , 2008 .

[63]  M. Maté-González,et al.  A new high-resolution 3-D quantitative method for analysing small morphological features: an example using a Cambrian trilobite , 2018, Scientific Reports.

[64]  J. O'connell,et al.  Cut and Tooth Mark Distributions on Large Animal Bones: Ethnoarchaeological Data from the Hadza and Their Implications For Current Ideas About Early Human Carnivory , 2002 .

[65]  R. Fort,et al.  An analytical study of Iberian Iron Age stone sculptures and their surface marks , 2013 .

[66]  Lorenzo Campana,et al.  The application of different 3D-scan-systems and photogrammetry at an excavation - A Neolithic dolmen from Switzerland , 2018, Digit. Appl. Archaeol. Cult. Heritage.

[67]  M. Domínguez‐Rodrigo,et al.  Configurational approach to identifying the earliest hominin butchers , 2010, Proceedings of the National Academy of Sciences.

[68]  J. Y. S. D. L. Terreros Implicaciones metalúrgicas de las marcas de corte en la transición Bronce Final/Hierro en el interior de la Península Ibérica , 2009 .

[69]  Juan Francisco Palomeque-González,et al.  The use of Micro-Photogrammetry and Geometric Morphometrics for identifying carnivore agency in bone assemblages , 2017 .

[70]  Stephen R. Merritt,et al.  A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. , 2017, Journal of human evolution.

[71]  W H Gilbert,et al.  Digital imaging of bone and tooth modification , 2000, The Anatomical record.

[72]  Jessica C. Thompson,et al.  Taphonomy of fossils from the hominin-bearing deposits at Dikika, Ethiopia. , 2015, Journal of human evolution.

[73]  T. Kaiser,et al.  The application of 3D-microprofilometry as a tool in the surface diagnosis of fossil and sub-fossil vertebrate hard tissue. An example from the Pliocene Upper Laetolil Beds, Tanzania , 2001 .

[74]  Silvia M. Bello,et al.  Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes , 2009 .

[75]  H. Greenfield Slicing Cut Marks on Animal Bones: Diagnostics for Identifying Stone Tool Type and Raw Material , 2006 .

[76]  Jacopo Crezzini,et al.  Wild cats and cut marks: Exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy) , 2014 .

[77]  Henrique Lorenzo,et al.  Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM , 2018, Sensors.

[78]  GeorgeDavey Smith THE ALLEGED DISCOVERY OF SYPHILIS IN PREHISTORIC EGYPTIANS. , 1907 .

[79]  M. Domínguez‐Rodrigo,et al.  A new protocol to differentiate trampling marks from butchery cut marks , 2009 .

[80]  Juan Francisco Palomeque-González,et al.  Flint and Quartzite: Distinguishing Raw Material Through Bone Cut Marks , 2018 .

[81]  Henry T. Bunn Olduvai Gorge , 2018, The International Encyclopedia of Biological Anthropology.

[82]  Phillip L. Walker,et al.  Butchering and Stone Tool Function , 1978, American Antiquity.

[83]  Pedro Arias,et al.  Automatic Inventory of Road Cross‐Sections from Mobile Laser Scanning System , 2017, Comput. Aided Civ. Infrastructure Eng..

[84]  José Manuel Naranjo,et al.  Geometric characterization and interactive 3D visualization of historical and cultural heritage in the province of Cáceres (Spain) , 2018 .

[85]  Eduardo Penedo Cobo,et al.  Proyecto de musealización de los restos hallados en la estación de Ópera (Metro de Madrid). Reconstrucciones infográficas, escaneo laser 3D y digitalización del patrimonio arqueológico. , 2012 .

[86]  Nerissa Russell,et al.  Relative frequency of butchering cutmarks produced by obsidian and flint: an experimental approach , 2007 .

[87]  Nilssen Pj An actualistic butchery study in South Africa and its implications for reconstructing hominid strategies of carcass acquisition and butchery in the upper Pleistocene and plio-Pleistocene , 2016 .

[88]  Caroline J. Nichol,et al.  UAVs in Context: Archaeological Airborne Recording in a National Body of Survey and Record , 2017 .

[89]  P. Andrews,et al.  Surface modifications of the Sima de los Huesos fossil humans. , 1997, Journal of human evolution.

[90]  P. Dodson,et al.  Taphonomic investigations of owl pellets , 1979, Paleobiology.

[91]  Fabio Remondino,et al.  Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning , 2011, Remote. Sens..

[92]  A reassessment of the study of cut mark patterns to infer hominid manipulation of fleshed carcasses at the FLK Zinj 22 site, Olduvai Gorge, Tanzania , 1997 .

[93]  Marinella Marchesi,et al.  Unveiling Damnatio Memoriae. The use of 3D digital technologies for the virtual reconstruction of archaeological finds and artefacts , 2016 .

[94]  P. Andrews,et al.  Owls, Caves and Fossils , 1990 .

[95]  P. Andrews Experiments in Taphonomy , 1995 .

[96]  Luís F. Ramos,et al.  Heritage site preservation with combined radiometric and geometric analysis of TLS data , 2018 .

[97]  Andrés López Arenas,et al.  Fotogrametría de bajo coste para la modelización de edificios históricos , 2011 .

[98]  Manuel Domínguez-Rodrigo,et al.  TESTING ANALOGICAL TAPHONOMIC SIGNATURES IN BONE BREAKING: A COMPARISON BETWEEN HAMMERSTONE-BROKEN EQUID AND BOVID BONES , 2011 .

[99]  Silvia M. Bello,et al.  New Results from the Examination of Cut-Marks Using Three-Dimensional Imaging , 2011 .

[100]  H. Martin Recherches sur l'évolution du moustérien dans le gisement de la Quina (Charente) , 1907 .

[101]  David R. Braun,et al.  Investigating the Signature of Aquatic Resource Use within Pleistocene Hominin Dietary Adaptations , 2013, PloS one.

[102]  B. Herrmann,et al.  Surface marks on bones from a neolithic collective grave (odagsen, lower saxony). A study on differential diagnosis* , 1985 .

[103]  M. Domínguez‐Rodrigo Meat-eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): an experimental approach using cut-mark data. , 1997, Journal of human evolution.

[104]  E. Baquedano,et al.  An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3 , 2012 .

[105]  M. Domínguez‐Rodrigo,et al.  A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages , 2009 .

[106]  Johnna Fisher Bone surface modifications in zooarchaeology , 1995 .

[107]  Diego González-Aguilera,et al.  Micro-photogrammetric characterization of cut marks on bones , 2015 .

[108]  Juan Francisco Palomeque-González,et al.  Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes , 2018, Archaeological and Anthropological Sciences.

[109]  Jose Alberto Torres-Martínez,et al.  A Multi-Data Source and Multi-Sensor Approach for the 3D Reconstruction and Web Visualization of a Complex Archaelogical Site: The Case Study of "Tolmo De Minateda" , 2016, Remote. Sens..

[110]  R. Blumenschine,et al.  Percussion marks on bone surfaces as a new diagnostic of hominid behaviour , 1988, Nature.

[111]  Jason E. Lewis Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons , 2008 .

[112]  Pedro Arias,et al.  Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners , 2012 .

[113]  R. Bonnichsen Pleistocene Bone Technology in the Beringian Refugium , 1979 .

[114]  Heather Bonney,et al.  An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades. , 2014, American journal of physical anthropology.

[115]  Miguel Carrero-Pazos,et al.  Digital imaging techniques for recording and analysing prehistoric rock art panels in Galicia (NW Iberia) , 2017, Digit. Appl. Archaeol. Cult. Heritage.

[116]  Andrea Masiero,et al.  Performance Evaluation of Two Indoor Mapping Systems: Low-Cost UWB-Aided Photogrammetry and Backpack Laser Scanning , 2018 .

[117]  Henry T. Bunn,et al.  Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge , 1981, Nature.

[118]  Diego González-Aguilera,et al.  An automatic procedure for co-registration of terrestrial laser scanners and digital cameras , 2009 .

[119]  Anna K. Behrensmeyer,et al.  Taphonomic and ecologic information from bone weathering , 1978, Paleobiology.

[120]  D. Derry Damage done to Skulls and Bones by Termites , 1911, Nature.

[121]  Stephanie Davy-Jow,et al.  The Use of a 3‐D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations , 2012, Journal of forensic sciences.

[122]  J. García,et al.  Aerial Photogrammetry by drone in archaeological sites with large structures. Methodological approach and practical application in the medieval castles of Campo de Montiel , 2015 .

[123]  R. García-Morales,et al.  Princeps Resurgens: archaeological research and photogrammetric documentation in the study of a Roman thoracata statue of Los Bañales (Uncastillo, Zaragoza) , 2015 .

[124]  M. Brickley,et al.  Analysis and interpretation of flint toolmarks found on bones from West Tump long barrow, Gloucestershire , 2004 .

[125]  Diego González-Aguilera,et al.  Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics , 2018, PloS one.

[126]  Diego González-Aguilera,et al.  Crack-Depth Prediction in Steel Based on Cooling Rate , 2016 .

[127]  J. Yravedra,et al.  Biotic and abiotic processes affecting the formation of BK Level 4c (Bed II, Olduvai Gorge) and their bearing on hominin behavior at the site , 2017 .

[128]  C. K. Brain The Hunters or the Hunted?: An Introduction to African Cave Taphonomy , 1983, Geological Magazine.

[129]  R. Blumenschine Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania , 1995 .

[130]  R. Potts,et al.  Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania , 1981, Nature.

[131]  J. Weigelt Recent vertebrate carcasses and their paleobiological implications , 1989 .

[132]  P. Shipman,et al.  Bone-collecting by harvesting ants , 1980, Paleobiology.

[133]  E M During,et al.  Mechanical surface analysis of bone: a case study of cut marks and enamel hypoplasia on a Neolithic cranium from Sweden. , 1991, American journal of physical anthropology.

[134]  J. Payne,et al.  A Summer Carrion Study of the Baby Pig Sus Scrofa Linnaeus , 1965 .

[135]  A. Gopher,et al.  Tortoises as a dietary supplement: A view from the Middle Pleistocene site of Qesem Cave, Israel , 2016 .

[136]  D. Grayson Danger Cave, Last Supper Cave, and Hanging Rock Shelter : the faunas , 1988 .

[137]  C. Marean,et al.  Tool-marked bones from before the Oldowan change the paradigm , 2011, Proceedings of the National Academy of Sciences.

[138]  Eija Honkavaara,et al.  A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application , 2018, Sensors.

[139]  R. Lyman 5 – Archaeofaunas and Butchery Studies: A Taphonomic Perspective , 1987 .