Role of the substrate in electronic structure, molecular orientation, and morphology of organic thin films: diindenoperylene on rutile TiO2(110).

The results of our multitechnique investigation performed on diindenoperylene thin films deposited on rutile TiO2(110) show island growth, with crystallites nucleating preferentially along the [110] substrate crystallographic axis. The findings evidence that the films' properties at the interface are common to those found for a number of organic molecules deposited on the same substrate, revealing that the structural and morphological properties of organic thin films on rutile TiO2(110) are completely driven by its surface morphology.

[1]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[2]  M. Casu,et al.  Influence of the preparation conditions on the morphology of perylene thin films on Si(111) and Si(100). , 2008, The Journal of chemical physics.

[3]  A. Schöll,et al.  Electronic relaxation effects in condensed polyacenes: A high-resolution photoemission study. , 2008, The Journal of chemical physics.

[4]  M. Casu,et al.  Photoemission electron microscopy of diindenoperylene thin films , 2008 .

[5]  M. Casu,et al.  Molecular orientation in diindenoperylene thin films deposited on polycrystalline gold , 2008 .

[6]  F. Schreiber,et al.  Organic molecular beam deposition: fundamentals, growth dynamics, and in situ studies , 2008 .

[7]  P. Cosseddu,et al.  A high-resolution near-edge x-ray absorption fine structure investigation of the molecular orientation in the pentacene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) pentacene/system. , 2008, The Journal of chemical physics.

[8]  Theo Siegrist,et al.  Enantiotropic Polymorphism in Di-Indenoperylene , 2007 .

[9]  O. Konovalov,et al.  Real-time observation of structural and orientational transitions during growth of organic thin films. , 2006, Physical review letters.

[10]  M. Casu,et al.  Growth mode and molecular orientation of phthalocyanine molecules on metal single crystal substrates: A NEXAFS and XPS study , 2006 .

[11]  D. P. Woodruff,et al.  Adsorption bond length for H2O on TiO2(110): a key parameter for theoretical understanding. , 2005, Physical review letters.

[12]  J. Venables,et al.  High spatial resolution studies of surfaces and small particles using electron beam techniques , 2005 .

[13]  J. Krenn,et al.  Oriented Sexiphenyl Single Crystal Nanoneedles on TiO2 (110) , 2004 .

[14]  A. Schöll,et al.  Line shapes and satellites in high-resolution x-ray photoelectron spectra of large pi-conjugated organic molecules. , 2004, The Journal of chemical physics.

[15]  J. Pflaum,et al.  Strongly Enhanced Thermal Stability of Crystalline Organic Thin Films Induced by Aluminum Oxide Capping Layers , 2004, cond-mat/0407588.

[16]  A. Schöll,et al.  High-Resolution Photoemission Study of Different NTCDA Monolayers on Ag(111): Bonding and Screening Influences on the Line Shapes† , 2004 .

[17]  G. Witte,et al.  Growth of aromatic molecules on solid substrates for applications in organic electronics , 2004 .

[18]  A. C. Dürr,et al.  Interplay between morphology, structure, and electronic properties at diindenoperylene-gold interfaces , 2003 .

[19]  Stephen R. Forrest,et al.  The road to high efficiency organic light emitting devices , 2003 .

[20]  N. Karl,et al.  Charge carrier transport in organic semiconductors , 2003 .

[21]  C. Wöll,et al.  The adsorption of acenes on rutile TiO2(110): A multi-technique investigation , 2002 .

[22]  F. Jones,et al.  Teeth and bones: applications of surface science to dental materials and related biomaterials , 2001 .

[23]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths for 31 materials , 1988 .

[24]  J. Stöhr,et al.  Determination of molecular orientations on surfaces from the angular dependence of near-edge x-ray-absorption fine-structure spectra. , 1987, Physical review. B, Condensed matter.

[25]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .